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1. Templates/Instructions  
1.1. BASIC IMAGE PROCESSING  

GradientIntensityEstimation:   Estimation of the gradient intensity in a local neighborhood 

UOld namesU: AVERGRAD 
 

 0 0 0   b b b    
A =  0 0 0  B =  b 0 b  z = 0 

 0 0 0   b b b    
 
where b = |v Buij B- v BuklB

 | / 8. 
 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0) 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Grayscale image representing the estimated average 
gradient intensity in a local neighborhood in P. 

II. Examples 

UExample 1: U image name: avergra2.bmp, image size: 64x64; template name: avergrad.tem. 

   
 input output 

III. ACE4K implementation 

Implementation method: optimization simplification . 

GradIntEstimation_ACE4K: (Full-range model, ACE4K) 
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Horidiffc.tem 
 0 0 0   0 0 0       

A = 0 0 0  B = 0 1 -3  z B1 B = 0  z B2 B = 2.45 
 0 0 0   0 0 0       

 
Verdiffc.tem 

 0 0 0   0 -2.5 0       
A = 0 0 0  B = 0 0.8 0  z B1 B = 0  z B2 B = 1.45 

 0 0 0   0 0 0       
 
NegLAMLLM.tem 

 0 0 0   0 0 0       
A = 0 3 0  B = 0 3 0  z B1 B = 0  z B2 B = 1.1 

 0 0 0   0 0 0       
 

AbsVal.tem 
 0 0 0   0 0 0       

A = 0 -1 0  B = 0 -.9 0  z B1 B = 1.7  z B2 B = 0 
 0 0 0   0 0 0       

 

 

AverHor.tem 
 0 0 0   0 0 0       

A = 0 0 0  B = 0 .5 0  z B1 B = .8  z B2 B = 0 
 0 0 0   0 0 0       

 
AverVer.tem 

 0 0 0   0 0 0       
A = 0 1 0  B = 0 1,75 0  z B1 B = 1  z B2 B = 0 

 0 0 0   0 0 0       

UExample 1U (resolution: 64x64): image name: avergra2.bmp, macro code: gradint_ace4k.amc. 

   
 input output 
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Remarks: 
• Masking works much better with DTCNN; 
• The current values has to be set peculiarly for all the template operations; 
• Central and non-central elements in the B templates behave different way… 
• I used a simplified form of the original template: the diagonal directions are the sum of the 

horizontal and vertical gradients and so the diagonal template elements could be omitted; 
• In this chip implementation averaging is omitted, because the algorithm has a bit superior 

performance, than the original nonlinear template (However, it can be included into the 
aververc.tem and averhorc.tem templates…). 

• The 2P

nd
P order gradient can be computed much easier (for the above test images provide 

almost the same result): Antagonistic Center-surround template and an Absolute Value 
template. 
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DiagonalHoleDetection:    Detects the number of diagonal holes from each diagonal line [6] 

UOld namesU: CCD_DIAG (Chua-Yang model) 
 

 1 0 0   0 0 0    
A =  0 2 0  B =  0 0 0  z = 0 

 0 0 -1   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒Y(∞) = Binary image that shows the number of diagonal holes 
in each diagonal line of image P.  

II. Example: image name: a_letter.bmp, image size: 117x121; template name: ccd_diag.tem . 

    
 input output 
III. ACE4K implementation 

Implementation method:  

DiagonalHoleDetection_ACE4K: (Full-range model, ACE4K) 

 
 2.3 0 0   0 0 0       

A = 0 3 0  B = 0 0 0  z B1 B = 0  z B2 B = 0 
 0 0 -2.3   0 0 0       

 

UExample 1U (resolution: 64x64): image name: sc_09.bmp, template name: 
ccd_diag_se_ace4k.tem. 

   
 input output 
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Remarks: 
• Image should be loaded into a LAM; 
• Repeat template operation a few times. 
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CenterPointDetector:    Center point detection [21] 

UOld namesU: CENTER 
 

 1 0 0   0 0 0    
AB1 B =  1 4 -1  BB1 B = 0 0 0  z B1 B = -1 

 1 0 0   0 0 0    
 

 1 1 1   0 0 0    
AB2 B =  1 6 0  BB2 B = 0 0 0  z B2 B = -1 

 1 0 -1   0 0 0    
 

 1 1 1   0 0 0    
AB3 B =  0 4 0  BB3 B = 0 0 0  z B3 B = -1 

 0 -1 0   0 0 0    
 

 1 1 1   0 0 0    
AB4 B =  0 6 1  BB4 B = 0 0 0  z B4 B = -1 

 -1 0 1   0 0 0    

. . . 
 

 1 0 -1   0 0 0    
AB8 B =  1 6 0  BB8 B = 0 0 0  z B8 B = -1 

 1 1 1   0 0 0    
 

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒Y(∞) = Binary image where a black pixel indicates the center 
point of the object in P. 

Remark: 
 The algorithm identifies the center point of the black-and-white input object. This is 
always a point of the object, halfway between the furthermost points of it. Here a DTCNN 
template sequence is given, each element of it should be used for a single step. It can easily be 
transformed to a continuous-time network: 
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CENTER1: 

 0 0 0   1 0 0    
AB1 B =  0 1 0  BB1 B = 1 4 -1  z B1 B = -1 

 0 0 0   1 0 0    
CENTER2: 

 0 0 0   1 1 1    
AB2 B =  0 1 0  BB2 B = 1 6 0  z B2 B = -1 

 0 0 0   1 0 -1    
 
CENTER3: 

 0 0 0   1 1 1    
AB3 B =  0 1 0  BB3 B = 0 4 0  z B3 B = -1 

 0 0 0   0 -1 0    
 
CENTER4: 

 0 0 0   1 1 1    
AB4 B =  0 1 0  BB4 B = 0 6 1  z B4 B = -1 

 0 0 0   -1 0 1    

. . . 
 
CENTER8: 

 0 0 0   1 0 -1    
AB8 B =  0 1 0  BB8 B = 1 6 0  z B8 B = -1 

 0 0 0   1 1 1    
 
The robustness of templates CENTER1 and CENTER2 are ρ(CENTER1) = 0.22 and 
ρ(CENTER2) = 0.15, respectively. Other templates are the rotated versions of CENTER1 and 
CENTER2, thus their robustness values are equal to the mentioned ones. 

II. Example: image name: chineese.bmp, image size: 16x16; template name: center.tem . 

    
 input output 
III. ACE4K implementation 

Implementation method: optimization. 

CenterPoint_ACE4K: (Full-range model, ACE4K) 

Discrete time CNN implementation:  
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 01 0 0   1 0 0    

AB1 B =  0 1 0  BB1 B = 1 3 -1  z B1 B = -1.95 
 0 0 0   1 0 0    

 
 0 0 0   .66 .66 .66    

AB2 B =  0 2 0  BB2 B = .66 2 0  z B2 B = -1 
 0 0 0   .66 0 -.66    

 
 0 0 0   .75 .75 .75    

AB3 B =  0 0 0  BB3 B = 0 3 0  z B3 B = -.75 
 0 0 0   0 -.75 0    

 
 0 0 0   1 1 1    

AB4 B =  0 3 0  BB4 B = 0 3 1  z B4 B = -1.95 
 0 0 0   -1 0 1    

. . . 
 

 0 0 0   1 0 -1    
AB8 B =  0 3 0  BB8 B = 1 3 0  z B8 B = -1.95 

 0 0 0   1 1 1    
 

Continuous time CNN implementation:  

 
 0 0 0   1 0 0    

AB1 B =  0 -1 0  BB1 B = 1 3 -1  z B1 B = -2.5 
 0 0 0   1 0 0    

 
 0 0 0   1 1 1    

AB2 B =  0 -1 0  BB2 B = 1 3 0  z B2 B = -6 
 0 0 0   1 0 -1    

 
 0 0 0   1 1 1    

AB3 B =  0 -1.3 0  BB3 B = 0 2 0  z B3 B = -6 
 0 0 0   0 -1 0    

 
 0 0 0   1 1 1    

AB4 B =  0 -1 0  BB4 B = 0 3 1  z B4 B = -6 
 0 0 0   -1 0 1    

. . . 
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 0 0 0   1 0 -1    
AB8 B =  0 -1 0  BB8 B = 1 3 0  z B8 B = -6 

 0 0 0   1 1 1    
 

UExample 2U (resolution: 64x64): image name: conv2.bmp, AMC and ALPHA file names: 
Cpd_ace4k.amc & Centerpointch.alf. 

 

   
 input output 
Remarks: 
• Before template running LLMs must be initialized with white; 
• The logic values (zeros and ones) seems to be reversed in the chip… 
• Both the discrete and continuous time CNN implementations are realizable on chip, but the 

later one is more sensitive for timing etc. 
• The current values are extremely depends on the temperature of the chip and does not accord 

to the theoretical values… 
• Continuous time version sometimes fail… 
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ContourExtraction:  Grayscale contour detector [8] 

UOld namesU: ContourDetector, CONTOUR 
 

 0 0 0   a a a    
A =  0 2 0  B =  a 0 a  z = 0.7 

 0 0 0   a a a    
 
where a is defined by the following nonlinear function: 
 

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image where black pixels represent the contours 
of the objects in P. 

Remark: 
The template extracts contours which resemble edges (resulting from big changes in gray 

level intensities) from grayscale images. 

II. Example: image name: madonna.bmp, image size: 59x59; template name: contour.tem . 

   
 input output 
 

vBuijB

-v Bukl B

 

0.18

a 

-0.18

0.5
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III. ACE4K implementation 
Implementation method: decomposition and optimization. 
 
Due to the hardware limitations the nonlinear template is replaced by eight pairs of linear B 
template. Templates check the difference between the central element and its nearest 
neighboring cells in eight directions. If the differences exceed a given threshold in certain 
number of directions, the pixel will be set to black, otherwise to white. 

Only 1 of the 8 required template-pairs are shown, the others can easily be generated by 
rotating value +-3  of template B. 
 
  
 
 
 
 
 
 
Horizontally, on the right: 
 

Horizontally, on the right: 

 0 0 0   0 0 0       
A = 0 -3 0  B = 0 3 -3  z B1 B = -0.1  z B2 B = 0 

 0 0 0   0 0 0       

With opposite sign: 

 0 0 0   0 0 0       
A = 0 -3 0  B = 0 -3 3  z B1 B = -0.1  z B2 B = 0 

 0 0 0   0 0 0       
 
Results of the subsequent template-operations in each direction are summarized in one picture. 
Finally, a threshold operation should be applied: 
 

 0 0 0   0 0 0       
A = 0 -3 0  B = 0 3 0  z B1 B = 1  z B2 B = 0 

 0 0 0   0 0 0       
 

vBuijB

-vBukl B

 

0.18

y 

vBuijB

-vBukl B

 

y 

-0.18 
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INPUT P

Threshold based on
DIFFERENCE

 Center - direction k

k=k+1

BW image MULTIPLIED by 0.1

OR

STORE

+

k<8?

THRESHOLD

RESULT

Threshold based on
DIFFERENCE

Direction k - Center

k=1
STORE=0

Yes

No

STORE

 
 

UExampleU (resolution: 64x64): image name: madonna.bmp. 

   
 input output 

 
• Local LLMs have to be initialized (filled up with zero). 
• State capacitors of the cells are to be initialized as well: an appropriate template operation 

drives their values to +1 before each grayscale-to-binary operation. 
• Each grayscale-to-binary operation is executed at least four times successively with the same 

input. Results are combined via AND logical operation. The net effect is a sort of noise-
filtering: false positive (black) pixels are erased. 
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CornerDetection:   Convex corner detection template [1] 

UOld namesU: CornerDetector, CORNER 

CornerDetection (Chua-Yang model): 
 

 0 0 0   -1 -1 -1    
A =  0 1 0  B =  -1 4 -1  z = -5 

 0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0) 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image where black pixels represent the convex 
corners of objects in P. 

Template robustness: ρ = 0.2 . 

Remark: 
Black pixels having at least 5 white neighbors are considered to be convex corners of the 

objects. 

II. Example: image name: chineese.bmp, image size: 16x16; template name: corner.tem . 

    
 input output 

III. ACE4K implementation 

Implementation method: optimization. 

CornerDetection_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   -1.3 -1.3 -1.3       

A = 0 3 0  B = -1.3 0 -1.3  z B1 B = -5  z B2 B = 0 
 0 0 0   -1.3 -1.3 -1.3       

 
UExample 1U (resolution: 64x64): image name: corner.bmp, template name: 
cornerdetection_ace4k.tem. 
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 input output 
Remarks: 
• We can use this template in the LAMs. 
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VerticalLineRemover:   Deletes vertical lines [8] 

UOld namesU: DELVERT1 

Delvert1 (Chua-Yang model): 

 
 0 0 0   0 -1 0    

A =  0 1 0  B =  0 1 0  z = -2 
 0 0 0   0 -1 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0) 

Boundary Conditions: Fixed type, uBijB = -1, for all virtual cells, denoted by [U] = -1 

Output: Y(t)⇒Y(∞) = Binary image representing P without vertical lines. 
Those parts of the objects that could be interpreted as vertical lines 
will also be deleted. 

Template robustness: ρ = 0.58 . 

Remark: 
The template deletes every black pixel having either a northern or southern black 

neighbor. 
The HorizontalLineRemover template, that deletes one pixel wide horizontal lines, can be 

obtained by rotating the VerticalLineRemover by 90°. The functionality of the WIREHOR and 
WIREVER templates that were published in earlier versions of this library, is identical to the 
functionality of the HorizontalLineRemover and VerticalLineRemover templates. 

II. Example: image name: delvert1.bmp, image size: 21x21; template name: delvert1.tem . 

   
 input output 
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III. ACE4K implementation 
Implementation method: optimization. 

Delvert_ACE4K: (Full-range model, ACE4K) 

 0 0 0   0 -1 0       
A = 0 1 0  B = 0 1.2 0  z B1 B = -3  z B2 B = 0 

 0 0 0   0 -1 0       
 

Delhor_ACE4K: (Full-range model, ACE4K) 

 0 0 0   0 0 0       
A = 0 1 0  B = -1 1.2 -1  z B1 B = -3  z B2 B = 0 

 0 0 0   0 0 0       

UExample 1U (resolution: 64x64): image name: delverthor_i.bmp, template name: 
delvert_ace4k.tem. 

   
 input output 
template name: delhor_ace4k.tem. 

   
 input output 
 

UExample 2U (resolution: 176x144): image name: delverthor_qcif_i.bmp, template name: 
delvert_ace4k.tem. 

   
 input output 
template name: delhor_ace4k.tem. 
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 input output 
 
Remarks: 
• Template operations should be executed twice successively. 
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DiagonalLineDetector:   Diagonal-line-detector template 

UOld namesU: DIAG1LIU, DetSWNE (Chua-Yang model) 
 

 0 0 0   -1 0 1    
A =  0 1 0  B =  0 1 0  z = -4 

 0 0 0   1 0 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uBijB = -1 for all virtual cells, denoted by [U]=-1 

Output: Y(t)⇒Y(∞) = Binary image representing the locations of diagonal 
lines in P. 

Template robustness: ρ = 0.45 . 

Remark: 
 Detects every black pixel having black north-eastern, black south-western, white north-
western, and white south-eastern neighbors. It may be used for detecting diagonal lines being in 
the SW-NE direction (like /). By modifying the position of the ±1 values of the B template, the 
template can be sensitized to other directions as well (vertical, horizontal or NW-SE diagonal). 
 

II. Example: image name: diag1liu.bmp, image size: 21x21; template name: diag1liu.tem . 

 

  
 input output 
 

III. ACE4K implementation 

Implementation method: optimization 

DIAG1LIU_ACE4K: (Full-range model, ACE4K) 
 

 0 0 0   -1 0 1       
A = 0 2 0  B = 0 1 0  z B1 B = -5  z B2 B = -5 

 0 0 0   1 0 -1       
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UExample 1U (resolution: 64x64): image name: detdiag.bmp, template name: diag1liu_ace4k.tem. 
 

   
 input  output 
 

UExample 2U (resolution: 176x144): image name: detdiag_tile.bmp, template name: 
diag1liu_ace4k.tem. 

 

   
 input  output 
 
Remarks: 
• By modifying the position of the ±1 values of the B template, the template can be sensitized 

to other directions as well (vertical, horizontal or NW-SE diagonal). 
• hw.set.ref 0  60 -85 -110 -3 -55 51 113 84 ;nominal setting for template run 
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EdgeDetection:    Binary edge detection template 

UOld namesU: EdgeDetector, EDGE  

EdgeDetection (Chua-Yang model): 

 0 0 0   -1 -1 -1    
A =  0 1 0  B =  -1 8 -1  z = -1 

 0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0) 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image showing all edges of P in black 

Template robustness: ρ = 0.12 . 

Remark: 
 Black pixels having at least one white neighbor compose the edge of the object. 

II. Example 

UExample: U image name: logic05.bmp, image size: 44x44; template name: edge.tem . 

   
 input output 
III. ACE4K implementation 

Implementation method: template decomposition and optimization. 

Result:  EdgeDetection ⇔ Edge1 AND INPUT 

Edge1 (Chua-Yang model): 

 0 0 0   -1 -1 -1    
A =  0 1 0  B =  -1 0 -1  z = 7 

 0 0 0   -1 -1 -1    
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Edge1_ACE4K: (Full-range model, ACE4K) 

 0 0 0   -1 -1 -1       
A = 0 3 0  B = -1 0 -1  z B1 B = 6  z B2 B = 4.8 

 0 0 0   -1 -1 -1       
 

UExample 1U (resolution: 64x64): image name: edge64_i.bmp, template name: edge1_ace4k.tem. 

   
 input output 
 

UExample 2U (resolution: 176x144): image name: michel_qcif_i.bmp, template name: 
edge1_ace4k.tem. 

   
 input output 
Remarks: 
• Template operations should be executed twice in a row. 
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OptimalEdgeDetector:   Optimal edge detector [43] 

OptimalEdgeDetector (Chua-Yang model): 

 0 0 0   -0.11 0 0.11    
A =  0 0 0  B =  -0.28 0 0.28  z = 0 

 0 0 0   -0.11 0 0.11    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0) 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒Y(∞) = Grayscale image representing edges calculated in 
horizontal direction. 

Remark: 
 The B template represents the optimal edge detector operator. 

II. Example: image name: bird.bmp, image size: 256x256; template name: optimedge.tem . 

   
 input output 

III. ACE4K implementation 

Implementation method: optimization. 

OptimalEdgeDetector_ACE4K: (Full-range model, ACE4K) 

 0 0 0   -0.33 0 0.33       
A = 0 -2 0  B = -0.84 0 0.84  z B1 B = 0.7  z B2 B = 0 

 0 0 0   -0.33 0 0.33       
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UExample 1U (resolution: 64x64): image name: bird64_i.bmp, template name: 
optimedge_ace4k.tem. 

   
 input output 
 

UExample 2U (resolution: 256x128): image names: bird01.bmp, bird02.bmp; template name: 
optimedge_ace4k.tem. 

   
 

   
 inputs outputs 
 
Remarks: 
• Due to memory problems the original 256x256 image was cut into 256x128 sub-images, and 

processed in two phases.  
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PointExtraction:   Extracts isolated black pixels  

UOld namesU: FigureRemover, FIGDEL 

PointExtraction (Chua-Yang model): 

 0 0 0   -1 -1 -1    
A =  0 1 0  B =  -1 1 -1  z = -8 

 0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image representing all isolated black pixels in P. 

Template robustness: ρ = 0.33 . 

II. Example: image name: figdel.bmp, image size: 20x20; template name: figdel.tem . 

    
 input output 
 

III. ACE4K implementation 

Implementation method: optimization. 

PointExtraction_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   -1 -1 -1       

A = 0 1.5 0  B = -1 0.5 -1  z B1 B = -6  z B2 B = 0 
 0 0 0   -1 -1 -1       
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UExample 1U (resolution: 64x64): image name: points.bmp, template name: 
PointExtraction_ace4k.tem. 

   
 input output 
 

Remarks: 
• This template can be used in LAMs. 
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PointRemoval:   Deletes isolated black pixels 

UOld namesU: FigureExtractor, FIGEXTR 

PointRemoval (Chua-Yang model): 

 0 0 0   1 1 1    
A =  0 1 0  B =  1 8 1  z = -1 

 0 0 0   1 1 1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image showing all connected components in P.  
Remark: 

 Black pixels having no black neighbors are deleted. This template is the opposite of 
PointExtraction. 

II. Example: image name: figdel.bmp, image size: 20x20; template name: figextr.tem . 

    
 input output 
 

III. ACE4K implementation 

Implementation method: optimization. 

PointRemoval_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   0.5 0.5 0.5       

A = 0 -2 0  B = 0.5 3 0.5  z B1 B = 0.5  z B2 B = 0 
 0 0 0   0.5 0.5 0.5       
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UExample 1U (resolution: 64x64): image name: points.bmp, template name: 
PointRemoval_ace4k.tem. 

   
 input output 
 

Remarks: 
1) We can use this template in the LLMs. 
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SelectedObjectsExtraction:   Extracts marked objects 

UOld namesU: FigureReconstructor, FIGREC, RECALL (Chua-Yang model) 
 
SelectedObjectsExtraction (Chua-Yang model): 
 

 0.5 0.5 0.5   0 0 0    
A =  0.5 4 0.5  B =  0 4 0  z = 3 

 0.5 0.5 0.5   0 0 0    

I. Global Task 

Given:  two static binary images PB1 B (mask) and PB2 B (marker). PB2 B contains just a 
part of PB1 B(PB2 B ⊂ PB1 B).  

Input: U(t) = PB1 B 

Initial State: X(0) = PB2 B 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒Y(∞) = Binary image representing those objects of PB1 B which 
are marked by PB2 B. 

Template robustness: ρ = 0.12 . 

II. Example: image names: figdel.bmp, figrec.bmp; image size: 20x20; template name: 
figrec.tem  

          
input      initial state       output 

 

III. ACE4K implementation 

Implementation method: Recall operation is based on fixed state mask. Marker image (P B2 B) 
should be fed into the initial state (LLM1) while the mask image (PB1 B) 
should be placed into fixed state (LLM4). 

SelectedObjectsExtraction_ACE4K: (Full-range model, ACE4K) 

 
 0.41 0.59 0.41   0 0 0       

A = 0.59 1.80 0.59  B = 0 0 0  z B1 B = 4  z B2 B = 0 
 0.41 0.59 0.41   0 0 0       
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Remarks: 
• Initial state should be a LLM; 
• Fixed state should be the LLM4 and white pixels denotes for positions where cell transient 

can take place. 
• Input image should be a LAM filled with zero. 
 
UExample 1U (resolution: 64x64): image name: recall1.bmp, template name: recall_ace4k.tem. 
 

     
 initial state markers fixed state output 
 

UExample 2U (resolution: 64x64): image name: recall2.bmp, template name: recall_ace4k.tem. 

     
 initial state markers fixed state output 
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3x3Halftoning:   3x3 image halftoning 

UOld namesU: HLF3, HLF33 
 
3x3Halftoning (Chua-Yang model): 
 

 -0.07 -0.1 -0.07   0.07 0.1 0.07    
A =  -0.1 1+ε -0.1  B =  0.1 0.32 0.1  z = 0 

 -0.07 -0.1 -0.07   0.07 0.1 0.07    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uBijB = 0, yBijB = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒Y(∞) = Binary image preserving the main features of P. 
Remark: 

 The speed of convergence is controlled by ε≈[0.1...1]. The greater the ε is, the faster the 
process and the rougher the result will be. The inverse of the template is 3x3InverseHalftoning. 
The result is acceptable in the Square Error measure [17,35]. 

This template is called "Half-Toning" in [44].  

II. Examples 

UExample 1: U image name: baboon.bmp, image size: 512x512; template name: hlf3.tem . 

  
 input output 
 
III. ACE4K implementation 

Implementation method: optimization. 

3x3Halftoning_ACE4K: (Full-range model, ACE4K) 
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 -0.07 -0.15 -0.07   0.07 0.15 0.07       
A = -0.15 1.15 -0.15  B = 0.15 0.15 0.15  z B1 B = 1.25  z B2 B = 0 

 -0.07 -0.15 -0.07   0.07 0.15 0.07       
 

UExample 1U (resolution: 64x64): image name: michelan64.bmp, template name: halftc.tem 

   
 input output 
 

Remarks: 
• There is some bias on the chip surface (top right corner is whiter, than it should be…). 
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Hole-Filling:   Fills the interior of all closed contours [6] 

UOld namesU: HoleFiller, HOLE 

Hole-Filling (Chua-Yang model): 

 
 0 1 0   0 0 0    

A =  1 3 1  B =  0 4 0  z = -1 
 0 1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = 1 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒Y(∞) = Binary image representing P with holes filled. 
Remark: 
(i)  this is a propagating template, the computing time is proportional to the length of 

the image 
(ii)  a more powerful template is the ConcaveLocationFiller template in this library. 

II. Example: image name: a_letter.bmp, image size: 117x121; template name: hole.tem . 

   
 input output 
III. ACE4K implementation 
Implementation method: optimization. 

Hole-Filling_ACE4K: (Full-range model, ACE4K) 

 0 0.68 0   0 0 0       
A = 0.68 1.71 0.68  B = 0 3 0  z B1 B = -0.95  z B2 B = -6 

 0 0.68 0   0 0 0       

Hole-FillingDT_ACE4K: (DT-CNN mode, ACE4K) 

 0 3 0   0 0 0       
A = 3 1 3  B = 0 3 0  z B1 B = 4  z B2 B = 0 

 0 3 0   0 0 0       
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UExample 1U (resolution: 64x64): image name: hole_i.bmp, template name: hole_ace4k.tem, 
holeDT_ace4k.tem. 

   
 input output 
 

UExample 2U (resolution: 64x64): image name: labyrinth.bmp, template name: hole_ace4k.tem, 
holeDT_ace4k.tem. 

   
 input output 
Remarks: 
• Special settings (continuos mode): hw.set.ref 0  60 -90 -81 16 -51 51 113 84 
• Special settings (DTCNN mode): hw.set.mode 1 2 
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ObjectIncreasing:    Increases the object by one pixel (DTCNN) [16] 

UOld namesU: INCREASE 
 

 0.5 0.5 0.5   0 0 0    
A =  0.5 0.5 0.5  B =  0 0 0  z = 4 

 0.5 0.5 0.5   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(1) = Binary image representing the objects of P increased by 1 
pixel in all direction. 

Remark: 
 Increasing the size of an object by N pixels in all directions can be achieved by N 
iteration steps of a DTCNN. 

II. Example: image name: a_letter.bmp, image size: 117x121; template name: increase.tem . 
One iteration step of a DTCNN is performed. 

   
 input output 
 

III. ACE4K implementation 

Implementation method: optimization. 

ObjectIncreasing_ACE4K: (Full-range model, ACE4K) 1. 

 
 0 1.6 0   0 0 0       

A = 1.6 -3 1.6  B = 0 3 0  z B1 B = 0  z B2 B = 0 
 0 1.6 0   0 0 0       

 

UExample 1U (resolution: 64x64): image name: aletter.bmp, template name: 
cornerdetection_ace4k.tem. 
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 input output 
 

ObjectIncreasing_ACE4K: (Full-range model, ACE4K) 2. 

 
 0 0 0   0.5 0.5 0.5       

A = 0 -2 0  B = 0.5 2 0.5  z B1 B = 0  z B2 B = 0 
 0 0 0   0.5 0.5 0.5       

 
UExample 2U (resolution: 64x64): image name: aletter.bmp, template name: 
cornerdetection_ace4k.tem. 

   
 input output 
 

ObjectIncreasing_ACE4K: (Full-range model, ACE4K) 3. 

 

 0 0 0   0.5 0.5 0.5       
A = 0 -3 0  B = 0.5 1.2 0.5  z B1 B = 5  z B2 B = 0 

 0 0 0   0.5 0.5 0.5       
 

UExample 3U (resolution: 64x64): image name: circle.bmp, template name: 
cornerdetection_ace4k.tem. 

   
 input output 
Remarks: 
• The Examples 1 and 2 were run in the LAMs. The Example 3 was run in the LLMs. 
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LocalSouthernElementDetector:   Local southern element detector [11] 

UOld namesU: LSE 

LocalSouthernElementDetector (Chua-Yang model): 

 0 0 0   0 0 0    
A =  0 1 0  B =  0 1 0  z = -3 

 0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image representing local southern elements of 
objects in P.  

Remark: 
 Local southern elements are pixels having neither south-western, nor southern or south-
eastern neighbors. 

II. Example: image name: lcp_lse.bmp, image size: 17x17; template name: lse.tem . 

    
 input output 
 

III. ACE4K implementation 

Implementation method: optimization. 

LocalSouthernElemenDetector_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   0 0 0       

A = 0 1 0  B = 0 1 0  z B1 B = -3.5  z B2 B = 0 
 0 0 0   0 0 0       

 
UExample 1U (resolution: 64x64): image name: local.bmp, template name: 
localsouthernelementdetector_ace4k.tem. 
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 input output 
 

Remarks: 
• This template can be used in the LAMs. 
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RightEdgeDetection:   Extracts right edges of objects 

UOld namesU: RightContourDetector, RIGHTCON 

RightEdgeDetection (Chua-Yang model): 

 
 0 0 0   0 0 0    

A =  0 1 0  B =  1 1 -1  z = -2 
 0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒Y(∞) = Binary image representing the right edges of objects in 
P.  

Template robustness: ρ = 0.58 . 

Remark: 
 By rotating B the template can be sensitized to other directions as well. 

II. Example:  image name: chineese.bmp, image size: 16x16; template name: rightcon.tem . 

    
 input output 
 

III. ACE4K implementation 

Implementation method: optimization. 

RightEdgeDetection_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   0 0 0       

A = 0 2 0  B = 2 3 -2  z B1 B = -6  z B2 B = 0 
 0 0 0   0 0 0       
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UExample 1U (resolution: 64x64): image name: corner.bmp, template name: 
rightedgedetection_ace4k.tem. 

   
 input output 
 

Remarks: 
• This template can be used in the LAMs. 
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ShadowProjection:   Projects onto the left the shadow of all objects illuminated from the right 
[6] 

UOld namesU: LeftShadow, SHADOW 

ShadowProjection (Chua-Yang model): 

 0 0 0   0 0 0    
A =  0 2 2  B =  0 2 0  z = 0 

 0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = 1 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)�Y(�) = Binary image representing the left shadow of the 
objects in P. 

Template robustness: � = 0.12 . 

Remark: 
 The shadow is the projection in direction left of the black pixels. 

II. Example 

UExample: U Left shadow. Image name: a_letter.bmp, image size: 117x121; template name: 
shadow.tem . 

    
 input output 
III. ACE4K implementation 

Implementation method: optimization. 

ShadowProjection _ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   0 0 0       

A = 0 2 2  B = 0 2 0  z B1 B = 1  z B2 B = 0 
 0 0 0   0 0 0       

 
 

UExample 1U (resolution: 64x64): image name: shadow.bmp, template name: shadow_ace4k.tem. 
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input                                output 

Remarks: 
• The execution of the template could not be solved using LLM-s. The loading of logical 

TRUE in the initial state was also faulty. There was no problem by using LAM-s. LAM with 
value 1 was used for the initial state. 

• The template worked only in a loop, after many executions. The range of the shadow effect 
increased continuously in the repetitions. 
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VerticalShadow:   Vertical shadow template 

UOld namesU: SHADSIM, SUPSHAD  

VerticalShadow (Chua-Yang model): 
 

 0 1 0   0 0 0    
A =  0 2 0  B =  0 0 0  z = 2 

 0 1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)�Y(�) = Binary image representing the vertical shadow of the 
objects in P taken upward and downward simultaneously. 

Template robustness: � = 0.12 . 

Remark: The vertical shadow is the union of those columns, which contain at least one 
black pixel. 
  

II. Example 

UExample: U  image name: chineese.bmp, image size: 16x16; template name: shadsim.tem . 

    
 input output 
III. ACE4K implementation 

Implementation method: optimization. 

VerticalShadow _ACE4K: (Full-range model, ACE4K) 

 
 0 2 0   0 0 0       

A = 0 0 0  B = 0 0 0  z B1 B = 3.5  z B2 B = 0 
 0 2 0   0 0 0       

 
 

UExample 1U (resolution: 64x64): image name: skelbwi64.bmp, template name: 
shadsim_ace4k.tem. 
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 input output 

 
Remarks: 
• The execution of the template could not be solved using LLM-s. 
• The template worked only in a loop, after many executions. The range of the shadow effect 

increased continuously in the repetitions. 
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1.3. SPATIAL LOGIC  

ConcaveLocationFiller:   Fills the concave locations of objects [22] 

UOld namesU: HOLLOW 
 
ConcaveLocationFiller (Chua-Yang model): 
 

 0.5 0.5 0.5   0 0 0    
A =  0.5 2 0.5  B =  0 2 0  z = 3.25 

 0.5 0.5 0.5   0 0 0    

I. Global Task 

Given: static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒Y(∞) = Binary image in which the concave locations of objects 
are black. 

Remark: 
 In general, the objects of P that are not filled should have at least a 2-pixel-wide contour. 
Otherwise the template may not work properly.  
The template transforms all the objects to solid black concave polygons with vertical, horizontal 
and diagonal edges only. 

II. Example:  image name: hollow.bmp, image size: 180x160; template name: hollow.tem . 

    
 input output (t=20τ BCNNB) output (t=∞) 
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III. ACE4K implementation 

Implementation method:  

ConcaveLocationFiller_ACE4K: (Full-range model, ACE4K) 

 
0.5 0.5 0.5   0 0 0       

A = 0.5 -3 0.5  B = 0 2.5 0  z B1 B = -  z B2 B = 1.0 
0.5 0.5 0.5   0 0 0       

 

UExample U(resolution: 64x64): image names: inputCLF.bmp, white.bmp; template name: 
hollow_ace4k.tem.  
 

 

                  input                     output after 100 it.          output after 200 it. 
 

Remarks: 
• Initial State: white.bmp 
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GrayscaleLineDetector:    Grayscale line detector template 

UOld namesU: LINE3060 
 

 0 0 0   b a a    
A =  0 1.5 0  B =  b 0 a  z = -4.5 

 0 0 0   a b b    
 
where a and b are defined by the following nonlinear functions: 

 

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = 0 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒Y(∞) = Binary image where black pixels correspond to the 
grayscale lines within a slope range of approximately 30° (30°-60°) in 
P.  

Remark: 
 It is supposed that the difference between values of a grayscale line and those of the 
background is not less than 0.25 (see function b). Analogously, the difference between values 
representing a grayscale line is supposed to be in the interval [-0.15, 0.15] (see function a). The 
template can easily be tuned for other input assumptions by changing functions a and b. 
The functionality of this template is similar to that of the rotated version of the 
GrayscaleDiagonalLineDetector template. 

II. Examples 

UExample 1 (simple):U  image name: line3060.bmp, image size: 41x42; template name: 
line3060.tem . 

   
 input output 

a 

-0.15 0.15 vuij-vukl 

1 

0.25 vuij-vukl 

1 
b 
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III. ACE4K implementation 

Implementation method: optimization. 

GrayscaleLineDetector _ACE4K: (Full-range model, ACE4K) 

‘Center –surround’ template by continuous time cnn. 
 

 -0.2 -0.20 0   -0.2 -0.2 0       
A = -0.20 1.2 -0.2  B = -0.2 1.2 -0.2  z B1 B = -0.5  z B2 B = 0 

 0 -0.2 -0.2   0 -0.2 -0.2       
 
Line detection template 
 

 0 0 0   -0.75 0.25 0.25       
A = 0 -1 0  B = -0.75 1 -0.25  z B1 B = 0  z B2 B = 0.2 

 0 0 0   0.25 -0.75 -0.75       
 

UExampleU (resolution: 64x64): image name: lin3060.bmp, amc name: gsline_ace4k.amc. 

   
 input output 
 

Remarks: 
• Before template running LLMs must be initialized with white. 
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LogicANDOperation:   Logic AND and Set Intersection ∩ (Conjunction ∧) template 

UOld namesU: LogicAND, LOGAND, AND 
 

 0 0 0   0 0 0    
A =  0 2 0  B =  0 1 0  z = -1 

 0 0 0   0 0 0    

I. Global Task 

Given: two static binary images PB1 B and PB2 B 

Input: U(t) = PB1 B 

Initial State: X(0) = PB2 B 

Output: Y(t)⇒Y(∞) = binary output of the logic operation “AND”  between 
PB1 B and B BPB2 B. In logic notation, Y(∞)=PB1 B∧PB2 B, where ∧ denotes the 
“conjunction” operator. In set-theoretic notation, Y(∞)=PB1 B∩PB2, Bwhere 
∩ denotes the  “intersection” operator. 

II. Example:  image names: logic01.bmp, logic02.bmp; image size: 44x44; template name: 
logand.tem . 

     
 input initial state output 
III. ACE4K implementation 

Implementation method: optimizationT. 

LogAND_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   0 0 0       

A = 0 2 0  B = 0 1 0  z B1 B = 0  z B2 B = 0 
 0 0 0   0 0 0       

 

UExample1U (resolution: 64x64): image name: striphor.bmp and stripver.bmp , template name: 
logand.tem. 
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 input 1 input 2 output 
 

Remarks: 

• Because of the experienced interference between binary pictures put in a common template 
operation robust operation could achieved only by the use of fixed map which works very 
reliably. 

• The test AMC code can be found here: 
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LogicOROperation:  Logic OR and Set Union ∪ (Disjunction ∨ ) template 

UOld namesU: LogicOR, LOGOR, OR 
 

 0 0 0   0 0 0    
A =  0 2 0  B =  0 1 0  z = 1 

 0 0 0   0 0 0    

I. Global Task 

Given:  two static binary images PB1 B and PB2 B 

Input: U(t) = PB1 B 

Initial State: X(0) = PB2 B 

Output: Y(t)⇒Y(∞) = binary output of the logic operation OR between PB1 B and 
PB2 B. In logic notation, Y(∞)=PB1 B∨PB2 B, where ∨ denotes the “disjunction” 
operator. In set-theoretic notation, Y(∞)=PB1 B∪PB2 B where ∪ denotes the 
“set union” operator. 

II. Example:  image names: logic01.bmp, logic02.bmp; image size: 44x44; template name: 
logor.tem . 

      
 input initial state output 
III. ACE4K implementation 

Implementation method: optimization. 

LogOR_ACE4K: (Full-range model, ACE4K) 

 
 0 0 0   0 0 0       

A = 0 1 0  B = 0 2 0  z B1 B = 0  z B2 B = 0 
 0 0 0   0 0 0       
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UExample 1U(resolution: 64x64): image name: striphor.bmp and stripver.bmp , template name: 
logor.tem. 

 input 1 input 2 output 
 

Remarks: 

• Because of the experienced interference between binary pictures put in a common template 
operation robust operation could achieved only by the use of fixed map which works very 
reliably. 
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PatchMaker:   Patch maker template [22] 

UOld namesU: PATCHMAK (Chua-Yang model) 
 

 0 1 0   0 0 0    
A =  1 2 1  B =  0 1 0  z = 4.5 

 0 1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒Y(T) = Binary image with enlarged objects of the input 
obtained after a certain time t = T. The size of the objects depends on 
time T. When T → ∞ all pixels will be driven to black. 

II. Example:  image name: patchmak.bmp; image size: 245x140; template name: patchmak.tem 
. 

  
 input output 
 

III. ACE4K implementation 

Implementation method:  

patchmaker_ace4k: (Full-range model, ACE4K) 

 
 0 1 0   0 0 0    

A =  1 1 1  B =  0 1 0  z = 4.5 
 0 1 0   0 0 0    

Remarks: 
• Images should be fed into LLMs; 
 
 

UExample 1U (resolution: 64x64); template: patchmaker_ace4k.tem. 

inputs 
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 a, b, c, 
outputs 

    
 a, b, c, 
Running time: 350 µs. 
 
UExample 2U (resolution: 200x300); template: patchmaker_ace4k.tem. 

  
 input output 
 
Running time: 630 µs. 
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SmallObjectRemover:   Deletes small objects [22] 

UOld namesU: SMKILLER 

SmallObjectRemover (Chua-Yang model): 
 

 1 1 1   0 0 0    
A =  1 2 1  B =  0 0 0  z = 0 

 1 1 1   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒Y(∞) = Binary image representing P without small objects.  
Remark: 

 This template drives dynamically white all those black pixels that have more than four 
white neighbors, and drives black all white pixels having more than four black neighbors. 

II. Example:  image name: smkiller.bmp; image size: 115x95; template name: smkiller.tem . 

   
 input output 

III. ACE4K implementation 

Implementation method: optimization. 

SmallObjectRemover_ACE4K: (Full-range model, ACE4K) 

 0.8 0.9 0.9   0 0 0       
A = 0.8 1 0.9  B = 0 0 0  z B1 B = -1.4  z B2 B = 0 

 0.8 0.9 0.9   0 0 0       
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UExample 1U (resolution: 64x64): image name: smkiller64_i.bmp, template name: 
smkiller_ace4k.tem. 

   
 input output 
Remarks: 
• LAM must be used for the template execution. 
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1.4. TEXTURE SEGMENTATION AND DETECTION  

3x3TextureSegmentation:   Segmentation of four textures by a 3*3 template [17] 

UOld namesU: TX_RACC3 
 

 0.86 0.94 3.75   0.16 -1.56 1.25    
A = 2.11 -2.81 3.75  B = -2.89 1.09 -3.2  z = 1.8 
 -1.33 -2.58 -1.02   4.06 4.69 3.75    

I. Global Task 

Given:  static grayscale image P representing four textures (raffia, aluminum 
mesh, 2 clothes) having the same flat grayscale histograms 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uBijB = 0, y BijB = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒Y(T) = Nearly binary image representing four patterns that 
differ in average gray-levels. 

Remark: 
This template is called "Texture Discrimination" in [44].  

II. Example:  image name: tx_racc.bmp, image size: 296x222; template name: tx_racc3.tem . 

   
 input output 
 
III. ACE4K implementation 

Implementation method: recalculation of the template elements 

Texture_ACE4K: (Full-range model, ACE4K) 
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UExample: U(resolution: 64x64): image name: text3x3.bmp, code name: text3x3.amc. 
 

text3x3.tem: segmentation template 
 

 0.55 0.6 2.39   0.1 -0.99 0.79       
A = -1.65 -2.43 -1.65  B = -1.84 0.69 -2.04 z B1 B = 0  z B2 B = 1.51 

 2.39 2.39 -0.65   2.59 3 2.39       
 

Using LAMs for the operation 

 input output 
 

Using LLMs for the operation. 

 input output 
 
clean.tem: Used for initializing LAM before the usage. 

 0 0 0   0 0 0       
A = 0 -1 0  B = 0 0 0  z B1 B = 0  z B2 B = 0 

 0 0 0   0 0 0       
 

Remarks: 
• The original picture read back after the operation seems quite agreement to the original picture so no significant 

distortion of the gray scale image were assumed. 
• The original template's values were down-sized to the range of the chip (-3,3). 
• The classification work reliably on binary images only. The gray scale variant turns to black very soon in case 

of loop running 
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GameofLife1Step:   Simulates one step of the game of life [11] 

UOld namesU: LIFE_1 
 

 0 0 0   -1 -1 -1    
AB11 B = 0 1 0  BB11 B = -1 0 -1  z = -1 

 0 0 0   -1 -1 -1    
 

 0 0 0   -1 -1 -1    
AB22 B = 0 1 0  BB21 B = -1 -1 -1  z = -4 

 0 0 0   -1 -1 -1    
 

I. Global Task 

Given:  static binary image P 

Inputs: UB1 B(t) = P, UB2 B(t) = P 

Initial States: XB1 B(0) = XB2 B(0) = -1 

Boundary Conditions: Fixed type, uBijB = -1 for all virtual cells, denoted by [U]= -1 

Outputs: YB1 B(t), YB2 B(t) ⇒YB1 B(∞),YB2 B(∞) = Binary images representing partial 
results. The desired output is YB1 B(∞) XOR YB2 B(∞). For the simulation of 
the following steps of game of life this image should be fed to the 
input of the first layer. 

 

II. Example:  image name: life_1.bmp, image size: 16x16; template name: life_1.tem . 

    
 input  output 

 

III. ACE4K implementation 

Implementation method: optimization 
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LIFE_1_ACE4K: (Full-range model, ACE4K) 
 

 0 0 0   -2 -2 -2    
AB11 B = 0 2.5 0  BB11 B = -2 0 -2  z = 1.4 

 0 0 0   -2 -2 -2    
 

 0 0 0   -1 -1 -1    
AB22 B = 0 1 0  BB21 B = -1 -1 -1  z = -3 

 0 0 0   -1 -1 -1    
 
UExample 1U (resolution: 64x64): image name: life_i.bmp, template name: life_1_ace4k.tem. 
 

    
 input  output 
 

UExample 2U (resolution: 176x144): image name: life_tile.bmp, template name: life_1_ace4k.tem. 

 

   
 input  output 
 
Remarks: 
1. Boundary condition could be periodic, approximate running time is 100 tau. 
2. hw.set.ref 0  60 -85 -110 -3 -55 51 113 84 ;nominal setting for template run 
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2. Subroutines  

EDGE CONTROLLED DIFFUSION   

I.  Description of the (original) gradient controlled diffusion algorithm 

The edge controlled diffusion algorithm is a modification of the gradient controlled diffusion 
algorithm, which was included in the CNN Software algorithm. 
The gradient controlled diffusion performs edge-enhancement during noise-elimination 
[17,25,30]. The equation used for filtering is as follows: 

( ) ( ) ( )( )( )[ ]∂
∂
  
 
I
t

I x y t k grad G s I x y t= ⋅ − ⋅ ∗∆ , , , ,1  

Here ( )I x y t, ,  is the image changing in time, ( )G s  is the Gaussian filter with aperture s , k  is a 
constant value between 1 and 3. Both the Gaussian filtering and the Laplace operator (∆) is done 
by the HeatDiffusion (diffusion) template with different diffusion coefficients. The 
ThresholdedGradient (gradient) template can also be found in this library. This equation can be 
used for noise filtering without decreasing the sharpness of edges. 

The flow-chart of the algorithm: 

diffusion template (s1)

gradient template

diffusion template (s)

subject

multiply

add

diffusion template

t = THIGH-PASSED IMAGEEDGE MAP

UNSHARP MASKED IMAGE

GRAY-SCALE IMAGE
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Example of the original algorithm: image name: laplace.bmp; image size: 100x100. 

  

 input output 
II.  Description of the edge controlled diffusion (on-chip) algorithm 

The algorithm contains a non-linear template for computing the gradient. This was not directly 
realizable on-chip. Therefore a collection of linear templates was chosen: orientation selective 
edge detection templates. Not all orientation were included in this test, thus the difference 
between the edge controlled and simple diffusion can be seen in the output picture. The 
remaining part of the algorithm was basically not modified. The diffusion was realized by a 
template, which was previously developed for diffusion. 

Diffusion: 

 0.35 0.35 0.35   0.2 0.2 0.2    
A =  0.35 -2.8 0.35  B =  0.2 0.1 0.2  z = 1.2 

 0.35 0.35 0.35   0.2 0.2 0.2    
Edge1: 

 0 0 0   0.7 0.7 0    
A =  0 1 0  B =  0.7 0 -0.7  z = -1.5 

 0 0 0   0 -0.7 -0.7    
Edge2: 

 0 0 0   -0.7 -0.7 0    
A =  0 1 0  B =  -0.7 0 0.7  z = -1.5 

 0 0 0   0 0.7 0.7    
 
Execution time: 
Diffusion: 1 
Edge: 50 

Example on chip: ecd.bmp image size: 64x64 
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Input   Diffusion 

 

  
Selected edges   Output 
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