
ANALOGIC COMPUTERS LTD.

Aladdin V1.3

CNN SOFTWARE LIBRARY FOR ACE4K CHIP
 (TEMPLATES AND ALGORITHMS)

VERSION 1.0

Budapest

2000

COPYRIGHT © 2000 ANALOGIC COMPUTERS LTD.
BUDAPEST, HUNGARY, 2000

 iii

TABLE OF CONTENTS

1. TEMPLATES/INSTRUCTIONS ...1

1.1. BASIC IMAGE PROCESSING ..1

GradientIntensityEstimation...1
Estimation of the gradient intensity in a local neighborhood

DiagonalHoleDetection..4
Detects the number of diagonal holes from each diagonal line

CenterPointDetector...6
Center point detection

ContourExtraction ..10
Grayscale contour detector

CornerDetection ...13
Convex corner detector

VerticalLineRemover ..15
Deletes vertical lines

DiagonalLineDetector ..18
Diagonal-line-detector template

EdgeDetection ..20
Binary edge detection template

OptimalEdgeDetector...22
Optimal edge detector template

PointExtraction...24
Extracts isolated black pixels

PointRemoval..26
Deletes isolated black pixels

SelectedObjectsExtraction..28
Extracts marked objects

3x3Halftoning ...30
3x3 image halftoning

Hole-Filling ..32
Hole-Filling

ObjectIncreasing ..34
Increases the object by one pixel (DTCNN)

LocalSouthernElementDetector..36
Local southern element detector

RightEdgeDetection..38
Extracts right edges of objects

ShadowProjection...40
Projects onto the left the shadow of all objects illuminated from the right

VerticalShadow...42
Vertical shadow template

4

1.3. SPATIAL LOGIC.. 44

ConcaveLocationFiller... 44
Fills the concave locations of objects

GrayscaleLineDetector .. 46
Grayscale line detector template

LogicANDOperation .. 48
Logic "AND" operation

LogicOROperation ... 50
Logic "OR" and Set Union ∪ (Disjunction ∨) template

PatchMaker .. 52
Patch maker template

SmallObjectRemover .. 54
Deletes small objects

1.4. TEXTURE SEGMENTATION AND DETECTION.. 56

3x3TextureSegmentation .. 56
Segmentation of four textures by a 3*3 template

GameofLife1Step .. 58
Simulates one step of the game of life

2. SUBROUTINES .. 60
EDGE CONTROLLED DIFFUSION... 60

REFERENCES... 63

INDEX... 66

1. Templates/Instructions
1.1. BASIC IMAGE PROCESSING

GradientIntensityEstimation: Estimation of the gradient intensity in a local neighborhood

UOld namesU: AVERGRAD

 0 0 0 b b b
A = 0 0 0 B = b 0 b z = 0

 0 0 0 b b b

where b = |v Buij B- v BuklB

 | / 8.

I. Global Task

Given: static grayscale image P

Input: U(t) = P

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0)

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Grayscale image representing the estimated average
gradient intensity in a local neighborhood in P.

II. Examples

UExample 1: U image name: avergra2.bmp, image size: 64x64; template name: avergrad.tem.

 input output

III. ACE4K implementation

Implementation method: optimization simplification .

GradIntEstimation_ACE4K: (Full-range model, ACE4K)

2

Horidiffc.tem
 0 0 0 0 0 0

A = 0 0 0 B = 0 1 -3 z B1 B = 0 z B2 B = 2.45
 0 0 0 0 0 0

Verdiffc.tem

 0 0 0 0 -2.5 0
A = 0 0 0 B = 0 0.8 0 z B1 B = 0 z B2 B = 1.45

 0 0 0 0 0 0

NegLAMLLM.tem

 0 0 0 0 0 0
A = 0 3 0 B = 0 3 0 z B1 B = 0 z B2 B = 1.1

 0 0 0 0 0 0

AbsVal.tem
 0 0 0 0 0 0

A = 0 -1 0 B = 0 -.9 0 z B1 B = 1.7 z B2 B = 0
 0 0 0 0 0 0

AverHor.tem
 0 0 0 0 0 0

A = 0 0 0 B = 0 .5 0 z B1 B = .8 z B2 B = 0
 0 0 0 0 0 0

AverVer.tem

 0 0 0 0 0 0
A = 0 1 0 B = 0 1,75 0 z B1 B = 1 z B2 B = 0

 0 0 0 0 0 0

UExample 1U (resolution: 64x64): image name: avergra2.bmp, macro code: gradint_ace4k.amc.

 input output

 3

Remarks:
• Masking works much better with DTCNN;
• The current values has to be set peculiarly for all the template operations;
• Central and non-central elements in the B templates behave different way…
• I used a simplified form of the original template: the diagonal directions are the sum of the

horizontal and vertical gradients and so the diagonal template elements could be omitted;
• In this chip implementation averaging is omitted, because the algorithm has a bit superior

performance, than the original nonlinear template (However, it can be included into the
aververc.tem and averhorc.tem templates…).

• The 2P

nd
P order gradient can be computed much easier (for the above test images provide

almost the same result): Antagonistic Center-surround template and an Absolute Value
template.

4

DiagonalHoleDetection: Detects the number of diagonal holes from each diagonal line [6]

UOld namesU: CCD_DIAG (Chua-Yang model)

 1 0 0 0 0 0
A = 0 2 0 B = 0 0 0 z = 0

 0 0 -1 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = Arbitrary or as a default U(t)=0

Initial State: X(0) = P

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)⇒Y(∞) = Binary image that shows the number of diagonal holes
in each diagonal line of image P.

II. Example: image name: a_letter.bmp, image size: 117x121; template name: ccd_diag.tem .

 input output
III. ACE4K implementation

Implementation method:

DiagonalHoleDetection_ACE4K: (Full-range model, ACE4K)

 2.3 0 0 0 0 0

A = 0 3 0 B = 0 0 0 z B1 B = 0 z B2 B = 0
 0 0 -2.3 0 0 0

UExample 1U (resolution: 64x64): image name: sc_09.bmp, template name:
ccd_diag_se_ace4k.tem.

 input output

 5

Remarks:
• Image should be loaded into a LAM;
• Repeat template operation a few times.

6

CenterPointDetector: Center point detection [21]

UOld namesU: CENTER

 1 0 0 0 0 0
AB1 B = 1 4 -1 BB1 B = 0 0 0 z B1 B = -1

 1 0 0 0 0 0

 1 1 1 0 0 0
AB2 B = 1 6 0 BB2 B = 0 0 0 z B2 B = -1

 1 0 -1 0 0 0

 1 1 1 0 0 0
AB3 B = 0 4 0 BB3 B = 0 0 0 z B3 B = -1

 0 -1 0 0 0 0

 1 1 1 0 0 0
AB4 B = 0 6 1 BB4 B = 0 0 0 z B4 B = -1

 -1 0 1 0 0 0

. . .

 1 0 -1 0 0 0
AB8 B = 1 6 0 BB8 B = 0 0 0 z B8 B = -1

 1 1 1 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = Arbitrary or as a default U(t)=0

Initial State: X(0) = P

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)⇒Y(∞) = Binary image where a black pixel indicates the center
point of the object in P.

Remark:
 The algorithm identifies the center point of the black-and-white input object. This is
always a point of the object, halfway between the furthermost points of it. Here a DTCNN
template sequence is given, each element of it should be used for a single step. It can easily be
transformed to a continuous-time network:

 7

CENTER1:

 0 0 0 1 0 0
AB1 B = 0 1 0 BB1 B = 1 4 -1 z B1 B = -1

 0 0 0 1 0 0
CENTER2:

 0 0 0 1 1 1
AB2 B = 0 1 0 BB2 B = 1 6 0 z B2 B = -1

 0 0 0 1 0 -1

CENTER3:

 0 0 0 1 1 1
AB3 B = 0 1 0 BB3 B = 0 4 0 z B3 B = -1

 0 0 0 0 -1 0

CENTER4:

 0 0 0 1 1 1
AB4 B = 0 1 0 BB4 B = 0 6 1 z B4 B = -1

 0 0 0 -1 0 1

. . .

CENTER8:

 0 0 0 1 0 -1
AB8 B = 0 1 0 BB8 B = 1 6 0 z B8 B = -1

 0 0 0 1 1 1

The robustness of templates CENTER1 and CENTER2 are ρ(CENTER1) = 0.22 and
ρ(CENTER2) = 0.15, respectively. Other templates are the rotated versions of CENTER1 and
CENTER2, thus their robustness values are equal to the mentioned ones.

II. Example: image name: chineese.bmp, image size: 16x16; template name: center.tem .

 input output
III. ACE4K implementation

Implementation method: optimization.

CenterPoint_ACE4K: (Full-range model, ACE4K)

Discrete time CNN implementation:

8

 01 0 0 1 0 0

AB1 B = 0 1 0 BB1 B = 1 3 -1 z B1 B = -1.95
 0 0 0 1 0 0

 0 0 0 .66 .66 .66

AB2 B = 0 2 0 BB2 B = .66 2 0 z B2 B = -1
 0 0 0 .66 0 -.66

 0 0 0 .75 .75 .75

AB3 B = 0 0 0 BB3 B = 0 3 0 z B3 B = -.75
 0 0 0 0 -.75 0

 0 0 0 1 1 1

AB4 B = 0 3 0 BB4 B = 0 3 1 z B4 B = -1.95
 0 0 0 -1 0 1

. . .

 0 0 0 1 0 -1
AB8 B = 0 3 0 BB8 B = 1 3 0 z B8 B = -1.95

 0 0 0 1 1 1

Continuous time CNN implementation:

 0 0 0 1 0 0

AB1 B = 0 -1 0 BB1 B = 1 3 -1 z B1 B = -2.5
 0 0 0 1 0 0

 0 0 0 1 1 1

AB2 B = 0 -1 0 BB2 B = 1 3 0 z B2 B = -6
 0 0 0 1 0 -1

 0 0 0 1 1 1

AB3 B = 0 -1.3 0 BB3 B = 0 2 0 z B3 B = -6
 0 0 0 0 -1 0

 0 0 0 1 1 1

AB4 B = 0 -1 0 BB4 B = 0 3 1 z B4 B = -6
 0 0 0 -1 0 1

. . .

 9

 0 0 0 1 0 -1
AB8 B = 0 -1 0 BB8 B = 1 3 0 z B8 B = -6

 0 0 0 1 1 1

UExample 2U (resolution: 64x64): image name: conv2.bmp, AMC and ALPHA file names:
Cpd_ace4k.amc & Centerpointch.alf.

 input output
Remarks:
• Before template running LLMs must be initialized with white;
• The logic values (zeros and ones) seems to be reversed in the chip…
• Both the discrete and continuous time CNN implementations are realizable on chip, but the

later one is more sensitive for timing etc.
• The current values are extremely depends on the temperature of the chip and does not accord

to the theoretical values…
• Continuous time version sometimes fail…

10

ContourExtraction: Grayscale contour detector [8]

UOld namesU: ContourDetector, CONTOUR

 0 0 0 a a a
A = 0 2 0 B = a 0 a z = 0.7

 0 0 0 a a a

where a is defined by the following nonlinear function:

I. Global Task

Given: static grayscale image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image where black pixels represent the contours
of the objects in P.

Remark:
The template extracts contours which resemble edges (resulting from big changes in gray

level intensities) from grayscale images.

II. Example: image name: madonna.bmp, image size: 59x59; template name: contour.tem .

 input output

vBuijB

-v Bukl B

0.18

a

-0.18

0.5

 11

III. ACE4K implementation
Implementation method: decomposition and optimization.

Due to the hardware limitations the nonlinear template is replaced by eight pairs of linear B
template. Templates check the difference between the central element and its nearest
neighboring cells in eight directions. If the differences exceed a given threshold in certain
number of directions, the pixel will be set to black, otherwise to white.

Only 1 of the 8 required template-pairs are shown, the others can easily be generated by
rotating value +-3 of template B.

Horizontally, on the right:

Horizontally, on the right:

 0 0 0 0 0 0
A = 0 -3 0 B = 0 3 -3 z B1 B = -0.1 z B2 B = 0

 0 0 0 0 0 0

With opposite sign:

 0 0 0 0 0 0
A = 0 -3 0 B = 0 -3 3 z B1 B = -0.1 z B2 B = 0

 0 0 0 0 0 0

Results of the subsequent template-operations in each direction are summarized in one picture.
Finally, a threshold operation should be applied:

 0 0 0 0 0 0
A = 0 -3 0 B = 0 3 0 z B1 B = 1 z B2 B = 0

 0 0 0 0 0 0

vBuijB

-vBukl B

0.18

y

vBuijB

-vBukl B

y

-0.18

12

INPUT P

Threshold based on
DIFFERENCE

 Center - direction k

k=k+1

BW image MULTIPLIED by 0.1

OR

STORE

+

k<8?

THRESHOLD

RESULT

Threshold based on
DIFFERENCE

Direction k - Center

k=1
STORE=0

Yes

No

STORE

UExampleU (resolution: 64x64): image name: madonna.bmp.

 input output

• Local LLMs have to be initialized (filled up with zero).
• State capacitors of the cells are to be initialized as well: an appropriate template operation

drives their values to +1 before each grayscale-to-binary operation.
• Each grayscale-to-binary operation is executed at least four times successively with the same

input. Results are combined via AND logical operation. The net effect is a sort of noise-
filtering: false positive (black) pixels are erased.

 13

CornerDetection: Convex corner detection template [1]

UOld namesU: CornerDetector, CORNER

CornerDetection (Chua-Yang model):

 0 0 0 -1 -1 -1
A = 0 1 0 B = -1 4 -1 z = -5

 0 0 0 -1 -1 -1

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0)

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image where black pixels represent the convex
corners of objects in P.

Template robustness: ρ = 0.2 .

Remark:
Black pixels having at least 5 white neighbors are considered to be convex corners of the

objects.

II. Example: image name: chineese.bmp, image size: 16x16; template name: corner.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

CornerDetection_ACE4K: (Full-range model, ACE4K)

 0 0 0 -1.3 -1.3 -1.3

A = 0 3 0 B = -1.3 0 -1.3 z B1 B = -5 z B2 B = 0
 0 0 0 -1.3 -1.3 -1.3

UExample 1U (resolution: 64x64): image name: corner.bmp, template name:
cornerdetection_ace4k.tem.

14

 input output
Remarks:
• We can use this template in the LAMs.

 15

VerticalLineRemover: Deletes vertical lines [8]

UOld namesU: DELVERT1

Delvert1 (Chua-Yang model):

 0 0 0 0 -1 0

A = 0 1 0 B = 0 1 0 z = -2
 0 0 0 0 -1 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0)

Boundary Conditions: Fixed type, uBijB = -1, for all virtual cells, denoted by [U] = -1

Output: Y(t)⇒Y(∞) = Binary image representing P without vertical lines.
Those parts of the objects that could be interpreted as vertical lines
will also be deleted.

Template robustness: ρ = 0.58 .

Remark:
The template deletes every black pixel having either a northern or southern black

neighbor.
The HorizontalLineRemover template, that deletes one pixel wide horizontal lines, can be

obtained by rotating the VerticalLineRemover by 90°. The functionality of the WIREHOR and
WIREVER templates that were published in earlier versions of this library, is identical to the
functionality of the HorizontalLineRemover and VerticalLineRemover templates.

II. Example: image name: delvert1.bmp, image size: 21x21; template name: delvert1.tem .

 input output

16

III. ACE4K implementation
Implementation method: optimization.

Delvert_ACE4K: (Full-range model, ACE4K)

 0 0 0 0 -1 0
A = 0 1 0 B = 0 1.2 0 z B1 B = -3 z B2 B = 0

 0 0 0 0 -1 0

Delhor_ACE4K: (Full-range model, ACE4K)

 0 0 0 0 0 0
A = 0 1 0 B = -1 1.2 -1 z B1 B = -3 z B2 B = 0

 0 0 0 0 0 0

UExample 1U (resolution: 64x64): image name: delverthor_i.bmp, template name:
delvert_ace4k.tem.

 input output
template name: delhor_ace4k.tem.

 input output

UExample 2U (resolution: 176x144): image name: delverthor_qcif_i.bmp, template name:
delvert_ace4k.tem.

 input output
template name: delhor_ace4k.tem.

 17

 input output

Remarks:
• Template operations should be executed twice successively.

18

DiagonalLineDetector: Diagonal-line-detector template

UOld namesU: DIAG1LIU, DetSWNE (Chua-Yang model)

 0 0 0 -1 0 1
A = 0 1 0 B = 0 1 0 z = -4

 0 0 0 1 0 -1

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Fixed type, uBijB = -1 for all virtual cells, denoted by [U]=-1

Output: Y(t)⇒Y(∞) = Binary image representing the locations of diagonal
lines in P.

Template robustness: ρ = 0.45 .

Remark:
 Detects every black pixel having black north-eastern, black south-western, white north-
western, and white south-eastern neighbors. It may be used for detecting diagonal lines being in
the SW-NE direction (like /). By modifying the position of the ±1 values of the B template, the
template can be sensitized to other directions as well (vertical, horizontal or NW-SE diagonal).

II. Example: image name: diag1liu.bmp, image size: 21x21; template name: diag1liu.tem .

 input output

III. ACE4K implementation

Implementation method: optimization

DIAG1LIU_ACE4K: (Full-range model, ACE4K)

 0 0 0 -1 0 1
A = 0 2 0 B = 0 1 0 z B1 B = -5 z B2 B = -5

 0 0 0 1 0 -1

 19

UExample 1U (resolution: 64x64): image name: detdiag.bmp, template name: diag1liu_ace4k.tem.

 input output

UExample 2U (resolution: 176x144): image name: detdiag_tile.bmp, template name:
diag1liu_ace4k.tem.

 input output

Remarks:
• By modifying the position of the ±1 values of the B template, the template can be sensitized

to other directions as well (vertical, horizontal or NW-SE diagonal).
• hw.set.ref 0 60 -85 -110 -3 -55 51 113 84 ;nominal setting for template run

20

EdgeDetection: Binary edge detection template

UOld namesU: EdgeDetector, EDGE

EdgeDetection (Chua-Yang model):

 0 0 0 -1 -1 -1
A = 0 1 0 B = -1 8 -1 z = -1

 0 0 0 -1 -1 -1

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0)

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image showing all edges of P in black

Template robustness: ρ = 0.12 .

Remark:
 Black pixels having at least one white neighbor compose the edge of the object.

II. Example

UExample: U image name: logic05.bmp, image size: 44x44; template name: edge.tem .

 input output
III. ACE4K implementation

Implementation method: template decomposition and optimization.

Result: EdgeDetection ⇔ Edge1 AND INPUT

Edge1 (Chua-Yang model):

 0 0 0 -1 -1 -1
A = 0 1 0 B = -1 0 -1 z = 7

 0 0 0 -1 -1 -1

 21

Edge1_ACE4K: (Full-range model, ACE4K)

 0 0 0 -1 -1 -1
A = 0 3 0 B = -1 0 -1 z B1 B = 6 z B2 B = 4.8

 0 0 0 -1 -1 -1

UExample 1U (resolution: 64x64): image name: edge64_i.bmp, template name: edge1_ace4k.tem.

 input output

UExample 2U (resolution: 176x144): image name: michel_qcif_i.bmp, template name:
edge1_ace4k.tem.

 input output
Remarks:
• Template operations should be executed twice in a row.

22

OptimalEdgeDetector: Optimal edge detector [43]

OptimalEdgeDetector (Chua-Yang model):

 0 0 0 -0.11 0 0.11
A = 0 0 0 B = -0.28 0 0.28 z = 0

 0 0 0 -0.11 0 0.11

I. Global Task

Given: static grayscale image P

Input: U(t) = P

Initial State: X(0) = Arbitrary (in the examples we choose x BijB(0)=0)

Boundary Conditions: Zero-flux boundary condition (duplicate)

Output: Y(t)⇒Y(∞) = Grayscale image representing edges calculated in
horizontal direction.

Remark:
 The B template represents the optimal edge detector operator.

II. Example: image name: bird.bmp, image size: 256x256; template name: optimedge.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

OptimalEdgeDetector_ACE4K: (Full-range model, ACE4K)

 0 0 0 -0.33 0 0.33
A = 0 -2 0 B = -0.84 0 0.84 z B1 B = 0.7 z B2 B = 0

 0 0 0 -0.33 0 0.33

 23

UExample 1U (resolution: 64x64): image name: bird64_i.bmp, template name:
optimedge_ace4k.tem.

 input output

UExample 2U (resolution: 256x128): image names: bird01.bmp, bird02.bmp; template name:
optimedge_ace4k.tem.

 inputs outputs

Remarks:
• Due to memory problems the original 256x256 image was cut into 256x128 sub-images, and

processed in two phases.

24

PointExtraction: Extracts isolated black pixels

UOld namesU: FigureRemover, FIGDEL

PointExtraction (Chua-Yang model):

 0 0 0 -1 -1 -1
A = 0 1 0 B = -1 1 -1 z = -8

 0 0 0 -1 -1 -1

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = Arbitrary

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image representing all isolated black pixels in P.

Template robustness: ρ = 0.33 .

II. Example: image name: figdel.bmp, image size: 20x20; template name: figdel.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

PointExtraction_ACE4K: (Full-range model, ACE4K)

 0 0 0 -1 -1 -1

A = 0 1.5 0 B = -1 0.5 -1 z B1 B = -6 z B2 B = 0
 0 0 0 -1 -1 -1

 25

UExample 1U (resolution: 64x64): image name: points.bmp, template name:
PointExtraction_ace4k.tem.

 input output

Remarks:
• This template can be used in LAMs.

26

PointRemoval: Deletes isolated black pixels

UOld namesU: FigureExtractor, FIGEXTR

PointRemoval (Chua-Yang model):

 0 0 0 1 1 1
A = 0 1 0 B = 1 8 1 z = -1

 0 0 0 1 1 1

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = Arbitrary

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image showing all connected components in P.
Remark:

 Black pixels having no black neighbors are deleted. This template is the opposite of
PointExtraction.

II. Example: image name: figdel.bmp, image size: 20x20; template name: figextr.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

PointRemoval_ACE4K: (Full-range model, ACE4K)

 0 0 0 0.5 0.5 0.5

A = 0 -2 0 B = 0.5 3 0.5 z B1 B = 0.5 z B2 B = 0
 0 0 0 0.5 0.5 0.5

 27

UExample 1U (resolution: 64x64): image name: points.bmp, template name:
PointRemoval_ace4k.tem.

 input output

Remarks:
1) We can use this template in the LLMs.

28

SelectedObjectsExtraction: Extracts marked objects

UOld namesU: FigureReconstructor, FIGREC, RECALL (Chua-Yang model)

SelectedObjectsExtraction (Chua-Yang model):

 0.5 0.5 0.5 0 0 0
A = 0.5 4 0.5 B = 0 4 0 z = 3

 0.5 0.5 0.5 0 0 0

I. Global Task

Given: two static binary images PB1 B (mask) and PB2 B (marker). PB2 B contains just a
part of PB1 B(PB2 B ⊂ PB1 B).

Input: U(t) = PB1 B

Initial State: X(0) = PB2 B

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)⇒Y(∞) = Binary image representing those objects of PB1 B which
are marked by PB2 B.

Template robustness: ρ = 0.12 .

II. Example: image names: figdel.bmp, figrec.bmp; image size: 20x20; template name:
figrec.tem

input initial state output

III. ACE4K implementation

Implementation method: Recall operation is based on fixed state mask. Marker image (P B2 B)
should be fed into the initial state (LLM1) while the mask image (PB1 B)
should be placed into fixed state (LLM4).

SelectedObjectsExtraction_ACE4K: (Full-range model, ACE4K)

 0.41 0.59 0.41 0 0 0

A = 0.59 1.80 0.59 B = 0 0 0 z B1 B = 4 z B2 B = 0
 0.41 0.59 0.41 0 0 0

 29

Remarks:
• Initial state should be a LLM;
• Fixed state should be the LLM4 and white pixels denotes for positions where cell transient

can take place.
• Input image should be a LAM filled with zero.

UExample 1U (resolution: 64x64): image name: recall1.bmp, template name: recall_ace4k.tem.

 initial state markers fixed state output

UExample 2U (resolution: 64x64): image name: recall2.bmp, template name: recall_ace4k.tem.

 initial state markers fixed state output

30

3x3Halftoning: 3x3 image halftoning

UOld namesU: HLF3, HLF33

3x3Halftoning (Chua-Yang model):

 -0.07 -0.1 -0.07 0.07 0.1 0.07
A = -0.1 1+ε -0.1 B = 0.1 0.32 0.1 z = 0

 -0.07 -0.1 -0.07 0.07 0.1 0.07

I. Global Task

Given: static grayscale image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Fixed type, uBijB = 0, yBijB = 0 for all virtual cells, denoted by [U]=[Y]=0

Output: Y(t)⇒Y(∞) = Binary image preserving the main features of P.
Remark:

 The speed of convergence is controlled by ε≈[0.1...1]. The greater the ε is, the faster the
process and the rougher the result will be. The inverse of the template is 3x3InverseHalftoning.
The result is acceptable in the Square Error measure [17,35].

This template is called "Half-Toning" in [44].

II. Examples

UExample 1: U image name: baboon.bmp, image size: 512x512; template name: hlf3.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

3x3Halftoning_ACE4K: (Full-range model, ACE4K)

 31

 -0.07 -0.15 -0.07 0.07 0.15 0.07
A = -0.15 1.15 -0.15 B = 0.15 0.15 0.15 z B1 B = 1.25 z B2 B = 0

 -0.07 -0.15 -0.07 0.07 0.15 0.07

UExample 1U (resolution: 64x64): image name: michelan64.bmp, template name: halftc.tem

 input output

Remarks:
• There is some bias on the chip surface (top right corner is whiter, than it should be…).

32

Hole-Filling: Fills the interior of all closed contours [6]

UOld namesU: HoleFiller, HOLE

Hole-Filling (Chua-Yang model):

 0 1 0 0 0 0

A = 1 3 1 B = 0 4 0 z = -1
 0 1 0 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = 1

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)⇒Y(∞) = Binary image representing P with holes filled.
Remark:
(i) this is a propagating template, the computing time is proportional to the length of

the image
(ii) a more powerful template is the ConcaveLocationFiller template in this library.

II. Example: image name: a_letter.bmp, image size: 117x121; template name: hole.tem .

 input output
III. ACE4K implementation
Implementation method: optimization.

Hole-Filling_ACE4K: (Full-range model, ACE4K)

 0 0.68 0 0 0 0
A = 0.68 1.71 0.68 B = 0 3 0 z B1 B = -0.95 z B2 B = -6

 0 0.68 0 0 0 0

Hole-FillingDT_ACE4K: (DT-CNN mode, ACE4K)

 0 3 0 0 0 0
A = 3 1 3 B = 0 3 0 z B1 B = 4 z B2 B = 0

 0 3 0 0 0 0

 33

UExample 1U (resolution: 64x64): image name: hole_i.bmp, template name: hole_ace4k.tem,
holeDT_ace4k.tem.

 input output

UExample 2U (resolution: 64x64): image name: labyrinth.bmp, template name: hole_ace4k.tem,
holeDT_ace4k.tem.

 input output
Remarks:
• Special settings (continuos mode): hw.set.ref 0 60 -90 -81 16 -51 51 113 84
• Special settings (DTCNN mode): hw.set.mode 1 2

34

ObjectIncreasing: Increases the object by one pixel (DTCNN) [16]

UOld namesU: INCREASE

 0.5 0.5 0.5 0 0 0
A = 0.5 0.5 0.5 B = 0 0 0 z = 4

 0.5 0.5 0.5 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = Arbitrary or as a default U(t)=0

Initial State: X(0) = P

Boundary Conditions: Zero-flux boundary condition (duplicate)

Output: Y(1) = Binary image representing the objects of P increased by 1
pixel in all direction.

Remark:
 Increasing the size of an object by N pixels in all directions can be achieved by N
iteration steps of a DTCNN.

II. Example: image name: a_letter.bmp, image size: 117x121; template name: increase.tem .
One iteration step of a DTCNN is performed.

 input output

III. ACE4K implementation

Implementation method: optimization.

ObjectIncreasing_ACE4K: (Full-range model, ACE4K) 1.

 0 1.6 0 0 0 0

A = 1.6 -3 1.6 B = 0 3 0 z B1 B = 0 z B2 B = 0
 0 1.6 0 0 0 0

UExample 1U (resolution: 64x64): image name: aletter.bmp, template name:
cornerdetection_ace4k.tem.

 35

 input output

ObjectIncreasing_ACE4K: (Full-range model, ACE4K) 2.

 0 0 0 0.5 0.5 0.5

A = 0 -2 0 B = 0.5 2 0.5 z B1 B = 0 z B2 B = 0
 0 0 0 0.5 0.5 0.5

UExample 2U (resolution: 64x64): image name: aletter.bmp, template name:
cornerdetection_ace4k.tem.

 input output

ObjectIncreasing_ACE4K: (Full-range model, ACE4K) 3.

 0 0 0 0.5 0.5 0.5
A = 0 -3 0 B = 0.5 1.2 0.5 z B1 B = 5 z B2 B = 0

 0 0 0 0.5 0.5 0.5

UExample 3U (resolution: 64x64): image name: circle.bmp, template name:
cornerdetection_ace4k.tem.

 input output
Remarks:
• The Examples 1 and 2 were run in the LAMs. The Example 3 was run in the LLMs.

36

LocalSouthernElementDetector: Local southern element detector [11]

UOld namesU: LSE

LocalSouthernElementDetector (Chua-Yang model):

 0 0 0 0 0 0
A = 0 1 0 B = 0 1 0 z = -3

 0 0 0 -1 -1 -1

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = Arbitrary

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image representing local southern elements of
objects in P.

Remark:
 Local southern elements are pixels having neither south-western, nor southern or south-
eastern neighbors.

II. Example: image name: lcp_lse.bmp, image size: 17x17; template name: lse.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

LocalSouthernElemenDetector_ACE4K: (Full-range model, ACE4K)

 0 0 0 0 0 0

A = 0 1 0 B = 0 1 0 z B1 B = -3.5 z B2 B = 0
 0 0 0 0 0 0

UExample 1U (resolution: 64x64): image name: local.bmp, template name:
localsouthernelementdetector_ace4k.tem.

 37

 input output

Remarks:
• This template can be used in the LAMs.

38

RightEdgeDetection: Extracts right edges of objects

UOld namesU: RightContourDetector, RIGHTCON

RightEdgeDetection (Chua-Yang model):

 0 0 0 0 0 0

A = 0 1 0 B = 1 1 -1 z = -2
 0 0 0 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Fixed type, uBijB = 0 for all virtual cells, denoted by [U]=0

Output: Y(t)⇒Y(∞) = Binary image representing the right edges of objects in
P.

Template robustness: ρ = 0.58 .

Remark:
 By rotating B the template can be sensitized to other directions as well.

II. Example: image name: chineese.bmp, image size: 16x16; template name: rightcon.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

RightEdgeDetection_ACE4K: (Full-range model, ACE4K)

 0 0 0 0 0 0

A = 0 2 0 B = 2 3 -2 z B1 B = -6 z B2 B = 0
 0 0 0 0 0 0

 39

UExample 1U (resolution: 64x64): image name: corner.bmp, template name:
rightedgedetection_ace4k.tem.

 input output

Remarks:
• This template can be used in the LAMs.

40

ShadowProjection: Projects onto the left the shadow of all objects illuminated from the right
[6]

UOld namesU: LeftShadow, SHADOW

ShadowProjection (Chua-Yang model):

 0 0 0 0 0 0
A = 0 2 2 B = 0 2 0 z = 0

 0 0 0 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = 1

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)�Y(�) = Binary image representing the left shadow of the
objects in P.

Template robustness: � = 0.12 .

Remark:
 The shadow is the projection in direction left of the black pixels.

II. Example

UExample: U Left shadow. Image name: a_letter.bmp, image size: 117x121; template name:
shadow.tem .

 input output
III. ACE4K implementation

Implementation method: optimization.

ShadowProjection _ACE4K: (Full-range model, ACE4K)

 0 0 0 0 0 0

A = 0 2 2 B = 0 2 0 z B1 B = 1 z B2 B = 0
 0 0 0 0 0 0

UExample 1U (resolution: 64x64): image name: shadow.bmp, template name: shadow_ace4k.tem.

 41

input output

Remarks:
• The execution of the template could not be solved using LLM-s. The loading of logical

TRUE in the initial state was also faulty. There was no problem by using LAM-s. LAM with
value 1 was used for the initial state.

• The template worked only in a loop, after many executions. The range of the shadow effect
increased continuously in the repetitions.

42

VerticalShadow: Vertical shadow template

UOld namesU: SHADSIM, SUPSHAD

VerticalShadow (Chua-Yang model):

 0 1 0 0 0 0
A = 0 2 0 B = 0 0 0 z = 2

 0 1 0 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = Arbitrary

Initial State: X(0) = P

Boundary Conditions: Zero-flux boundary condition (duplicate)

Output: Y(t)�Y(�) = Binary image representing the vertical shadow of the
objects in P taken upward and downward simultaneously.

Template robustness: � = 0.12 .

Remark: The vertical shadow is the union of those columns, which contain at least one
black pixel.

II. Example

UExample: U image name: chineese.bmp, image size: 16x16; template name: shadsim.tem .

 input output
III. ACE4K implementation

Implementation method: optimization.

VerticalShadow _ACE4K: (Full-range model, ACE4K)

 0 2 0 0 0 0

A = 0 0 0 B = 0 0 0 z B1 B = 3.5 z B2 B = 0
 0 2 0 0 0 0

UExample 1U (resolution: 64x64): image name: skelbwi64.bmp, template name:
shadsim_ace4k.tem.

 43

 input output

Remarks:
• The execution of the template could not be solved using LLM-s.
• The template worked only in a loop, after many executions. The range of the shadow effect

increased continuously in the repetitions.

44

1.3. SPATIAL LOGIC

ConcaveLocationFiller: Fills the concave locations of objects [22]

UOld namesU: HOLLOW

ConcaveLocationFiller (Chua-Yang model):

 0.5 0.5 0.5 0 0 0
A = 0.5 2 0.5 B = 0 2 0 z = 3.25

 0.5 0.5 0.5 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)⇒Y(∞) = Binary image in which the concave locations of objects
are black.

Remark:
 In general, the objects of P that are not filled should have at least a 2-pixel-wide contour.
Otherwise the template may not work properly.
The template transforms all the objects to solid black concave polygons with vertical, horizontal
and diagonal edges only.

II. Example: image name: hollow.bmp, image size: 180x160; template name: hollow.tem .

 input output (t=20τ BCNNB) output (t=∞)

 45

III. ACE4K implementation

Implementation method:

ConcaveLocationFiller_ACE4K: (Full-range model, ACE4K)

0.5 0.5 0.5 0 0 0

A = 0.5 -3 0.5 B = 0 2.5 0 z B1 B = - z B2 B = 1.0
0.5 0.5 0.5 0 0 0

UExample U(resolution: 64x64): image names: inputCLF.bmp, white.bmp; template name:
hollow_ace4k.tem.

 input output after 100 it. output after 200 it.

Remarks:
• Initial State: white.bmp

46

GrayscaleLineDetector: Grayscale line detector template

UOld namesU: LINE3060

 0 0 0 b a a
A = 0 1.5 0 B = b 0 a z = -4.5

 0 0 0 a b b

where a and b are defined by the following nonlinear functions:

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = 0

Boundary Conditions: Zero-flux boundary condition (duplicate)

Output: Y(t)⇒Y(∞) = Binary image where black pixels correspond to the
grayscale lines within a slope range of approximately 30° (30°-60°) in
P.

Remark:
 It is supposed that the difference between values of a grayscale line and those of the
background is not less than 0.25 (see function b). Analogously, the difference between values
representing a grayscale line is supposed to be in the interval [-0.15, 0.15] (see function a). The
template can easily be tuned for other input assumptions by changing functions a and b.
The functionality of this template is similar to that of the rotated version of the
GrayscaleDiagonalLineDetector template.

II. Examples

UExample 1 (simple):U image name: line3060.bmp, image size: 41x42; template name:
line3060.tem .

 input output

a

-0.15 0.15 vuij-vukl

1

0.25 vuij-vukl

1
b

 47

III. ACE4K implementation

Implementation method: optimization.

GrayscaleLineDetector _ACE4K: (Full-range model, ACE4K)

‘Center –surround’ template by continuous time cnn.

 -0.2 -0.20 0 -0.2 -0.2 0
A = -0.20 1.2 -0.2 B = -0.2 1.2 -0.2 z B1 B = -0.5 z B2 B = 0

 0 -0.2 -0.2 0 -0.2 -0.2

Line detection template

 0 0 0 -0.75 0.25 0.25
A = 0 -1 0 B = -0.75 1 -0.25 z B1 B = 0 z B2 B = 0.2

 0 0 0 0.25 -0.75 -0.75

UExampleU (resolution: 64x64): image name: lin3060.bmp, amc name: gsline_ace4k.amc.

 input output

Remarks:
• Before template running LLMs must be initialized with white.

48

LogicANDOperation: Logic AND and Set Intersection ∩ (Conjunction ∧) template

UOld namesU: LogicAND, LOGAND, AND

 0 0 0 0 0 0
A = 0 2 0 B = 0 1 0 z = -1

 0 0 0 0 0 0

I. Global Task

Given: two static binary images PB1 B and PB2 B

Input: U(t) = PB1 B

Initial State: X(0) = PB2 B

Output: Y(t)⇒Y(∞) = binary output of the logic operation “AND” between
PB1 B and B BPB2 B. In logic notation, Y(∞)=PB1 B∧PB2 B, where ∧ denotes the
“conjunction” operator. In set-theoretic notation, Y(∞)=PB1 B∩PB2, Bwhere
∩ denotes the “intersection” operator.

II. Example: image names: logic01.bmp, logic02.bmp; image size: 44x44; template name:
logand.tem .

 input initial state output
III. ACE4K implementation

Implementation method: optimizationT.

LogAND_ACE4K: (Full-range model, ACE4K)

 0 0 0 0 0 0

A = 0 2 0 B = 0 1 0 z B1 B = 0 z B2 B = 0
 0 0 0 0 0 0

UExample1U (resolution: 64x64): image name: striphor.bmp and stripver.bmp , template name:
logand.tem.

 49

 input 1 input 2 output

Remarks:

• Because of the experienced interference between binary pictures put in a common template
operation robust operation could achieved only by the use of fixed map which works very
reliably.

• The test AMC code can be found here:

50

LogicOROperation: Logic OR and Set Union ∪ (Disjunction ∨) template

UOld namesU: LogicOR, LOGOR, OR

 0 0 0 0 0 0
A = 0 2 0 B = 0 1 0 z = 1

 0 0 0 0 0 0

I. Global Task

Given: two static binary images PB1 B and PB2 B

Input: U(t) = PB1 B

Initial State: X(0) = PB2 B

Output: Y(t)⇒Y(∞) = binary output of the logic operation OR between PB1 B and
PB2 B. In logic notation, Y(∞)=PB1 B∨PB2 B, where ∨ denotes the “disjunction”
operator. In set-theoretic notation, Y(∞)=PB1 B∪PB2 B where ∪ denotes the
“set union” operator.

II. Example: image names: logic01.bmp, logic02.bmp; image size: 44x44; template name:
logor.tem .

 input initial state output
III. ACE4K implementation

Implementation method: optimization.

LogOR_ACE4K: (Full-range model, ACE4K)

 0 0 0 0 0 0

A = 0 1 0 B = 0 2 0 z B1 B = 0 z B2 B = 0
 0 0 0 0 0 0

 51

UExample 1U(resolution: 64x64): image name: striphor.bmp and stripver.bmp , template name:
logor.tem.

 input 1 input 2 output

Remarks:

• Because of the experienced interference between binary pictures put in a common template
operation robust operation could achieved only by the use of fixed map which works very
reliably.

52

PatchMaker: Patch maker template [22]

UOld namesU: PATCHMAK (Chua-Yang model)

 0 1 0 0 0 0
A = 1 2 1 B = 0 1 0 z = 4.5

 0 1 0 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Zero-flux boundary condition (duplicate)

Output: Y(t)⇒Y(T) = Binary image with enlarged objects of the input
obtained after a certain time t = T. The size of the objects depends on
time T. When T → ∞ all pixels will be driven to black.

II. Example: image name: patchmak.bmp; image size: 245x140; template name: patchmak.tem
.

 input output

III. ACE4K implementation

Implementation method:

patchmaker_ace4k: (Full-range model, ACE4K)

 0 1 0 0 0 0

A = 1 1 1 B = 0 1 0 z = 4.5
 0 1 0 0 0 0

Remarks:
• Images should be fed into LLMs;

UExample 1U (resolution: 64x64); template: patchmaker_ace4k.tem.

inputs

 53

 a, b, c,
outputs

 a, b, c,
Running time: 350 µs.

UExample 2U (resolution: 200x300); template: patchmaker_ace4k.tem.

 input output

Running time: 630 µs.

54

SmallObjectRemover: Deletes small objects [22]

UOld namesU: SMKILLER

SmallObjectRemover (Chua-Yang model):

 1 1 1 0 0 0
A = 1 2 1 B = 0 0 0 z = 0

 1 1 1 0 0 0

I. Global Task

Given: static binary image P

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Fixed type, y BijB = 0 for all virtual cells, denoted by [Y]=0

Output: Y(t)⇒Y(∞) = Binary image representing P without small objects.
Remark:

 This template drives dynamically white all those black pixels that have more than four
white neighbors, and drives black all white pixels having more than four black neighbors.

II. Example: image name: smkiller.bmp; image size: 115x95; template name: smkiller.tem .

 input output

III. ACE4K implementation

Implementation method: optimization.

SmallObjectRemover_ACE4K: (Full-range model, ACE4K)

 0.8 0.9 0.9 0 0 0
A = 0.8 1 0.9 B = 0 0 0 z B1 B = -1.4 z B2 B = 0

 0.8 0.9 0.9 0 0 0

 55

UExample 1U (resolution: 64x64): image name: smkiller64_i.bmp, template name:
smkiller_ace4k.tem.

 input output
Remarks:
• LAM must be used for the template execution.

56

1.4. TEXTURE SEGMENTATION AND DETECTION

3x3TextureSegmentation: Segmentation of four textures by a 3*3 template [17]

UOld namesU: TX_RACC3

 0.86 0.94 3.75 0.16 -1.56 1.25
A = 2.11 -2.81 3.75 B = -2.89 1.09 -3.2 z = 1.8
 -1.33 -2.58 -1.02 4.06 4.69 3.75

I. Global Task

Given: static grayscale image P representing four textures (raffia, aluminum
mesh, 2 clothes) having the same flat grayscale histograms

Input: U(t) = P

Initial State: X(0) = P

Boundary Conditions: Fixed type, uBijB = 0, y BijB = 0 for all virtual cells, denoted by [U]=[Y]=0

Output: Y(t)⇒Y(T) = Nearly binary image representing four patterns that
differ in average gray-levels.

Remark:
This template is called "Texture Discrimination" in [44].

II. Example: image name: tx_racc.bmp, image size: 296x222; template name: tx_racc3.tem .

 input output

III. ACE4K implementation

Implementation method: recalculation of the template elements

Texture_ACE4K: (Full-range model, ACE4K)

 57

UExample: U(resolution: 64x64): image name: text3x3.bmp, code name: text3x3.amc.

text3x3.tem: segmentation template

 0.55 0.6 2.39 0.1 -0.99 0.79
A = -1.65 -2.43 -1.65 B = -1.84 0.69 -2.04 z B1 B = 0 z B2 B = 1.51

 2.39 2.39 -0.65 2.59 3 2.39

Using LAMs for the operation

 input output

Using LLMs for the operation.

 input output

clean.tem: Used for initializing LAM before the usage.

 0 0 0 0 0 0
A = 0 -1 0 B = 0 0 0 z B1 B = 0 z B2 B = 0

 0 0 0 0 0 0

Remarks:
• The original picture read back after the operation seems quite agreement to the original picture so no significant

distortion of the gray scale image were assumed.
• The original template's values were down-sized to the range of the chip (-3,3).
• The classification work reliably on binary images only. The gray scale variant turns to black very soon in case

of loop running

58

GameofLife1Step: Simulates one step of the game of life [11]

UOld namesU: LIFE_1

 0 0 0 -1 -1 -1
AB11 B = 0 1 0 BB11 B = -1 0 -1 z = -1

 0 0 0 -1 -1 -1

 0 0 0 -1 -1 -1
AB22 B = 0 1 0 BB21 B = -1 -1 -1 z = -4

 0 0 0 -1 -1 -1

I. Global Task

Given: static binary image P

Inputs: UB1 B(t) = P, UB2 B(t) = P

Initial States: XB1 B(0) = XB2 B(0) = -1

Boundary Conditions: Fixed type, uBijB = -1 for all virtual cells, denoted by [U]= -1

Outputs: YB1 B(t), YB2 B(t) ⇒YB1 B(∞),YB2 B(∞) = Binary images representing partial
results. The desired output is YB1 B(∞) XOR YB2 B(∞). For the simulation of
the following steps of game of life this image should be fed to the
input of the first layer.

II. Example: image name: life_1.bmp, image size: 16x16; template name: life_1.tem .

 input output

III. ACE4K implementation

Implementation method: optimization

 59

LIFE_1_ACE4K: (Full-range model, ACE4K)

 0 0 0 -2 -2 -2
AB11 B = 0 2.5 0 BB11 B = -2 0 -2 z = 1.4

 0 0 0 -2 -2 -2

 0 0 0 -1 -1 -1
AB22 B = 0 1 0 BB21 B = -1 -1 -1 z = -3

 0 0 0 -1 -1 -1

UExample 1U (resolution: 64x64): image name: life_i.bmp, template name: life_1_ace4k.tem.

 input output

UExample 2U (resolution: 176x144): image name: life_tile.bmp, template name: life_1_ace4k.tem.

 input output

Remarks:
1. Boundary condition could be periodic, approximate running time is 100 tau.
2. hw.set.ref 0 60 -85 -110 -3 -55 51 113 84 ;nominal setting for template run

60

2. Subroutines

EDGE CONTROLLED DIFFUSION

I. Description of the (original) gradient controlled diffusion algorithm

The edge controlled diffusion algorithm is a modification of the gradient controlled diffusion
algorithm, which was included in the CNN Software algorithm.
The gradient controlled diffusion performs edge-enhancement during noise-elimination
[17,25,30]. The equation used for filtering is as follows:

() () ()()()[]∂
∂

I
t

I x y t k grad G s I x y t= ⋅ − ⋅ ∗∆ , , , ,1

Here ()I x y t, , is the image changing in time, ()G s is the Gaussian filter with aperture s , k is a
constant value between 1 and 3. Both the Gaussian filtering and the Laplace operator (∆) is done
by the HeatDiffusion (diffusion) template with different diffusion coefficients. The
ThresholdedGradient (gradient) template can also be found in this library. This equation can be
used for noise filtering without decreasing the sharpness of edges.

The flow-chart of the algorithm:

diffusion template (s1)

gradient template

diffusion template (s)

subject

multiply

add

diffusion template

t = THIGH-PASSED IMAGEEDGE MAP

UNSHARP MASKED IMAGE

GRAY-SCALE IMAGE

 61

Example of the original algorithm: image name: laplace.bmp; image size: 100x100.

 input output
II. Description of the edge controlled diffusion (on-chip) algorithm

The algorithm contains a non-linear template for computing the gradient. This was not directly
realizable on-chip. Therefore a collection of linear templates was chosen: orientation selective
edge detection templates. Not all orientation were included in this test, thus the difference
between the edge controlled and simple diffusion can be seen in the output picture. The
remaining part of the algorithm was basically not modified. The diffusion was realized by a
template, which was previously developed for diffusion.

Diffusion:

 0.35 0.35 0.35 0.2 0.2 0.2
A = 0.35 -2.8 0.35 B = 0.2 0.1 0.2 z = 1.2

 0.35 0.35 0.35 0.2 0.2 0.2
Edge1:

 0 0 0 0.7 0.7 0
A = 0 1 0 B = 0.7 0 -0.7 z = -1.5

 0 0 0 0 -0.7 -0.7
Edge2:

 0 0 0 -0.7 -0.7 0
A = 0 1 0 B = -0.7 0 0.7 z = -1.5

 0 0 0 0 0.7 0.7

Execution time:
Diffusion: 1
Edge: 50

Example on chip: ecd.bmp image size: 64x64

62

Input Diffusion

Selected edges Output

 63

REFERENCES

[1] L. O. Chua and L. Yang, “Cellular neural networks: Theory and Applications”, IEEE Transactions on Circuits
and Systems, Vol. 35, pp. 1257-1290, October 1988.

[2] L. O. Chua and L. Yang, “The CNN Paradigm”, IEEE Transactions on Circuits and Systems−I: Fundamental
Theory and Applications, Vol. 40, pp. 147-156, March 1993.

[3] T. Roska and L. O. Chua, “The CNN Universal Machine: An Analogic Array Computer”, IEEE Transactions
on Circuits and Systems−II: Analog and Digital Signal Processing, Vol. 40, pp. 163-173, March 1993.

[4] The CNN Workstation Toolkit, Version 6.0, MTA SzTAKI, Budapest, 1994.

[5] P. L. Venetianer, A. Radványi, and T. Roska, "ACL (an Analogical CNN Language), Version 2.0, Research
report of the Analogical and Neural Computing Laboratory, Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SzTAKI), DNS-3-1994, Budapest, 1994.

[6] T. Matsumoto, T. Yokohama, H. Suzuki, R. Furukawa, A. Oshimoto, T. Shimmi, Y. Matsushita, T. Seo and
L. O. Chua, "Several Image Processing Examples by CNN", Proceedings of the International Workshop on
Cellular Neural Networks and their Applications (CNNA-90), pp. 100-112, Budapest, 1990.

[7] T. Roska, T. Boros, A. Radványi, P. Thiran, L. O. Chua, "Detecting Moving and Standing Objects Using
Cellular Neural Networks", International Journal of Circuit Theory and Applications, October 1992, and
Cellular Neural Networks, edited by T. Roska and J. Vandewalle, 1993.

[8] T. Boros, K. Lotz, A. Radványi, and T. Roska, "Some Useful New Nonlinear and Delay-type Templates",
Research report of the Analogical and Neural Computing Laboratory, Computer and Automation Research
Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-1-1991, Budapest, 1991.

[9] S. Fukuda, T. Boros, and T. Roska, "A New Efficient Analysis of Thermographic Images by using Cellular
Neural Networks", Research report of the Analogical and Neural Computing Laboratory, Computer and
Automation Research Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-11-1991, Budapest,
1991.

[10] L. O. Chua, T. Roska, P. L. Venetianer, and Á. Zarándy, "Some Novel Capabilities of CNN: Game of Life and
Examples of Multipath Algorithms", Research report of the Analogical and Neural Computing Laboratory,
Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-3-1992,
Budapest, 1992.

[11] L. O. Chua, T. Roska, P. L. Venetianer, and Á. Zarándy, "Some Novel Capabilities of CNN: Game of Life and
Examples of Multipath Algorithms", Proceedings of the International Workshop on Cellular Neural Networks
and their Applications (CNNA-92), pp. 276-281, Munich, 1992.

[12] T. Roska, K. Lotz, J. Hámori, E. Lábos, and J. Takács, "The CNN Model in the Visual Pathway - Part I: The
CNN-Retina and some Direction- and Length-selective Mechanisms", Research report of the Analogical and
Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of
Sciences (MTA SzTAKI), DNS-8-1991, Budapest, 1991.

[13] T. Roska, J. Hámori, E. Lábos, K. Lotz, L. Orzó, J. Takács, P. L. Venetianer, Z. Vidnyánszky, and
Á. Zarándy, "The Use of CNN Models in the Subcortical Visual Pathway", Research report of the Analogical
and Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of
Sciences (MTA SzTAKI), DNS-16-1992, Budapest, 1992.

[14] P. Szolgay, I. Kispál, and T. Kozek, "An Experimental System for Optical Detection of Layout Errors of
Printed Circuit Boards Using Learned CNN Templates", Proceedings of the International Workshop on
Cellular Neural Networks and their Applications (CNNA-92), pp. 203-209, Munich, 1992.

[15] K. R. Crounse, T. Roska, and L. O. Chua, "Image halftoning with Cellular Neural Networks", IEEE
Transactions on Circuits and Systems−II: Analog and Digital Signal Processing, Vol. 40, No. 4, pp. 267-283,
1993.

64

[16] H. Harrer and J. A. Nossek, "Discrete-Time Cellular Neural Networks", TUM-LNS-TR-91-7, Technical
University of Munich, Institute for Network Theory and Circuit Design, March 1991.

[17] T.Sziranyi and M.Csapodi, "Texture classification and Segmentation by Cellular Neural Network using
Genetic Learning", Computer Vision and Image Understanding, Vol. 71, No. 3, pp. 255-270, September 1998.

[18] A. Schultz, I. Szatmári, Cs. Rekeczky, T. Roska, and L. O. Chua, “Bubble-debris classification via binary
morphology and autowave metric on CNN”, International Symposium on Nonlinear Theory and its
Applications, Hawaii, 1997

[19] P. L. Venetianer, F. Werblin, T. Roska, and L. O. Chua, "Analogic CNN Algorithms for some Image
Compression and Restoration Tasks", IEEE Transactions on Circuits and Systems, Vol. 42, No.5, 1995.

[20] P. L. Venetianer, K. R. Crounse, P. Szolgay, T. Roska, and L. O. Chua, "Analog Combinatorics and Cellular
Automata - Key Algorithms and Layout Design using CNN", Proceedings of the International Workshop on
Cellular Neural Networks and their Applications (CNNA-94), pp. 249-256, Rome, 1994.

[21] H. Harrer, P. L. Venetianer, J. A. Nossek, T. Roska, and L. O. Chua, "Some Examples of Preprocessing
Analog Images with Discrete-Time Cellular Neural Networks", Proceedings of the International Workshop on
Cellular Neural Networks and their Applications (CNNA-94), pp. 201-206, Rome, 1994.

[22] Á. Zarándy, F. Werblin, T. Roska, and L. O. Chua, "Novel Types of Analogic CNN Algorithms for
Recognizing Bank-notes", Proceedings of the International Workshop on Cellular Neural Networks and their
Applications (CNNA-94), pp. 273-278, Rome, 1994.

[23] E. R. Kandel and J. H. Schwartz, "Principles of Neural Science", Elsevier, New York, 1985.

[24] A. Radványi, "Using Cellular Neural Network to 'See' Random-Dot Stereograms" in Computer Analysis of
Images and Patterns, Lecture Notes in Computer Science 719, Springer Verlag, 1993.

[25] M. Csapodi, Diploma Thesis, Technical University of Budapest, 1994.

[26] K. Lotz, Z. Vidnyánszky, T. Roska, and J. Hámori, "The receptive field ATLAS for the visual pathway",
Report NIT-4-1994, Neuromorphic Information Technology, Graduate Center, Budapest, 1994.

[27] G. Tóth, Diploma Thesis, Technical University of Budapest, 1994.

[28] T. Boros, K. Lotz, A. Radványi, and T.Roska, "Some useful, new, nonlinear and delay-type templates",
Research report of the Analogical and Neural Computing Laboratory, Computer and Automation Research
Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-1-1991, Budapest, 1991.

[29] G. Tóth, "Analogic CNN Algorithm for 3D Interpolation-Approximation", Research report of the Analogical
and Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of
Sciences (MTA SzTAKI), DNS-2-1995, Budapest, 1995.

[30] P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion”, Proceedings of the IEEE
Computer Society Workshop on Computer Vision, 1987.

[31] F. Werblin, T. Roska, and L. O. Chua, “The Analogic Cellular Neural Network as a Bionic Eye”,
International Journal of Circuit Theory and Applications, Vol. 23, No. 6, pp. 541-569, 1995.

[32] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 532-550, Vol. PAMI-9, No. 4, July 1987.

[33] L. O. Chua, T. Roska, T. Kozek, and Á. Zarándy, “The CNN Paradigm − A Short Tutorial”, Cellular Neural
Networks, T. Roska and J. Vandewalle, editors, John Wiley & Sons, New York, 1993, pp. 1-14.

[34] Cs. Rekeczky, Y. Nishio, A. Ushida, and T. Roska, “CNN Based Adaptive Smoothing and Some Novel Types
of Nonlinear Operators for Grey-Scale Image Processing”, in proceedings of NOLTA’95, Las Vegas,
December 1995.

[35] T. Szirányi, “Robustness of Cellular Neural Networks in image deblurring and texture segmentation”,
International Journal of Circuit Theory and Applications, Vol. 24, pp. 381-396, May 1996.

[36] Á. Zarándy, “The Art of CNN Template Design”, International Journal of Circuit Theory and Applications,
Vol. 27, No. 1, pp. 5-23, 1999.

 65

[37] M. Csapodi, J. Vandewalle, and T. Roska, “Applications of CNN-UM chips in multimedia authentication”,
ESAT-COSIC Report / TR 97-1, Department of Electrical Engineering, Katholieke Universiteit Leuven, 1997.

[38] L. Nemes, L. O. Chua, “TemMaster Template Design and Optimization Tool for Binary Input-Output CNNs,
User’s Guide”, Analogical and Neural Computing Laboratory, Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA-SzTAKI), Budapest, 1997.

[39] P. Szolgay, K. Tömördi, "Optical detection of breaks and short circuits on the layouts of printed circuit boards
using CNN", Proceedings of the International Workshop on Cellular Neural Networks and their Applications
(CNNA-96), pp. 87-91, Seville, 1996.

[40] Hvilsted, S.; Ramanujam, P.S., “Side-chain liquid crystalline azobenzene polyesters with unique reversible
optical storage properties”. Curr. Trends Pol. Sci. (1996) v.1, pp. 53-63.

[41] S. Espejo, A. Rodriguez-Vázquez, R. A. Carmona, P. Földesy, Á. Zarándy, P. Szolgay, T. Szirányi, and
T. Roska, “0.8µm CMOS Two Dimensional Programmable Mixed-Signal Focal-Plane Array Processor with
On-Chip Binary Imaging and Instruction Storage”, IEEE Journal on Solid State Circuits, Vol. 32., No. 7.,
pp. 1013-1026,. July 1997.

[42] G. Liñán, S. Espejo, R. Domínguez-Castro, E. Roca, and A. Rodriguez-Vázquez, “CNNUC3: A Mixed-Signal
64x64 CNN Universal Chip”, Proceedings of the International Conference on Microelectronics for Neural,
Fuzzy and Bio-inspired Systems (MicroNeuro’99), pp. 61-68, Granada, Spain, 1999.

[43] S. Ando, "Consistent Gradient Operations", IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 22., No. 3., pp. 252-265,. March 2000.

[44] L. O. Chua, "CNN: a paradigm for complexity", World Scientific Series On Nonlinear Science, Series A, Vol.
31, 1998.

[45] L. Nemes, L.O. Chua, and T. Roska, “Implementation of Arbitrary Boolean Functions on the CNN Universal
Machine”, International Journal of Circuit Theory and Applications - Special Issue: Theory, Design and
Applications of Cellular Neural Networks: Part I: Theory, (CTA Special Issue - I), Vol. 26. No. 6, pp. 593-
610, 1998.

[46] I. Szatmári, Cs. Rekeczky, and T. Roska, "A Nonlinear Wave Metric and its CNN Implementation for Object
Classification", Journal of VLSI Signal Processing, Special Issue: Spatiotemporal Signal Signal Processing
with Analogic CNN Visual Microprocessors, Vol.23, No.2/3, pp. 437-448, Kluwer, 1999.

[47] I. Szatmári, "The implementation of a Nonlinear Wave Metric for Image Analysis and Classification on the
64x64 I/O CNN-UM Chip", CNNA 2000, 6th IEEE International Workshop on Cellular Neural Networks and
their Applications, May 23-25, 2000, University of Catania, Italy.

[48] I. Szatmári, A. Schultz, Cs. Rekeczky, T. Roska, and L. O. Chua, "Bubble-Debris Classification via Binary
Morphology and Autowave Metric on CNN", IEEE Trans. on Neural Networks, in print.

[49] P. Földesy, L. Kék, T. Roska, Á. Zarándy, and G. Bártfai, “Fault Tolerant CNN Template Design and
Optimization Based on Chip Measurements”, Proceedings of the IEEE International Workshop on Cellular
Neural Networks and their Applications (CNNA’98), pp. 404-409, London, 1998.

[50] P. Földesy, L. Kék, Á. Zarándy, T. Roska, and G. Bártfai, “Fault Tolerant Design of Analogic CNN Templates
and Algorithms − Part I: The Binary Output Case”, IEEE Transactions on Circuits and Systems special issue
on Bio-Inspired Processors and Cellular Neural Networks for Vision, Vol. 46, No. 2, pp. 312-322, February
1999.

[51] Á. Zarándy, T. Roska, P. Szolgay, S. Zöld, P. Földesy and I. Petrás, "CNN Chip Prototyping and
Development Systems", European Conference on Circuit Theory and Design - ECCTD'99, Design
Automation Day proceedings, (ECCTD'99-DAD), Stresa, Italy, 1999.

[52] I. Petrás, T. Roska, "Application of Direction Constrained and Bipolar Waves for Pattern Recognition",
Proceedings of the IEEE International Workshop on Cellular Neural Networks and their Applications
(CNNA2000), in print

66

INDEX

3

3x3Halftoning, 30

3x3TextureSegmentation, 56

C

CenterPointDetector, 6

ConcaveLocationFiller, 44

ContourExtraction, 10

CornerDetection, 13

D

DiagonalHoleDetection, 4

DiagonalLineDetector, 18

E

EDGE CONTROLLED DIFFUSION, 60

EdgeDetection, 20

G

GameofLife1Step, 58

GradientIntensityEstimation, 1

GrayscaleLineDetector, 46

H

Hole-Filling, 32

L

LocalSouthernElementDetector, 36

LogicANDOperation, 48

LogicOROperation, 50

O

ObjectIncreasing, 34

OptimalEdgeDetector, 22

P

PatchMaker, 52

PointExtraction, 24

PointRemoval, 26

R

RightEdgeDetection, 38

S

SelectedObjectsExtraction, 28

ShadowProjection, 40

SmallObjectRemover, 54

V

VerticalLineRemover, 15

VerticalShadow, 42

	INDEX

